
Seven Pernicious Kingdoms:
A Taxonomy of Software Security Errors

Katrina Tsipenyuk
Fortify Software

2300 Geng Road, Suite 102
Palo Alto, CA 94303

1-650-213-5600

katrina@fortifysoftware.com

Brian Chess
Fortify Software

2300 Geng Road, Suite 102
Palo Alto, CA 94303

1-650-213-5600

brian@fortifysoftware.com

Gary McGraw
Cigital

21351 Ridgetop Circle, Suite 400
Dulles, VA 20166
1-703-404-9293

gem@cigital.com

ABSTRACT
We want to help developers and security practitioners understand
common types of coding errors that lead to vulnerabilities. By
organizing these errors into a simple taxonomy, we can teach
developers to recognize categories of problems that lead to
vulnerabilities and identify existing errors as they build software.

The information contained in our taxonomy is most effectively
enforced via a tool. In fact, all of the errors included in our
taxonomy are amenable to automatic identification using static
source code analysis techniques.

We demonstrate why our taxonomy is not only simpler, but also
more comprehensive than other modern taxonomy proposals and
vulnerability lists. We provide an in-depth explanation and one or
more code-level examples for each of the errors on a companion
web site: http://vulncat.fortifysoftware.com.

Categories and Subject Descriptors
D.4.6 [Operating Systems]: Security and Protection – access
controls, authentication, cryptographic controls, information flow
controls, invasive software. K.6.5 [Management of Computing
and Information Systems]: Security and Protection –
authentication, invasive software, unauthorized access.

General Terms
Security, standardization.

Keywords
Software security, security defects, taxonomy, static analysis
tools.

1. INTRODUCTION
We believe that software developers play a crucial role in
building secure computer systems. Because roughly half of all
security defects are introduced at the source code level [14],
coding errors (a.k.a. “bugs”) are a critical problem in software
security.

In defining this taxonomy of coding errors, our primary goal is to
organize sets of security rules that can be used to help software
developers understand the kinds of errors that have an impact on
security. We believe that one of the most effective ways to deliver
this information to developers is through the use of tools. Our
hope is that, by better understanding how systems fail, developers
will better analyze the systems they create, more readily identify
and address security problems when they see them, and generally
avoid repeating the same mistakes in the future.

When put to work in a tool, a set of security rules organized
according to this taxonomy is a powerful teaching mechanism.
Because developers today are by and large unaware of the myriad
ways they can introduce security problems into their work,
publication of a taxonomy like this should provide tangible
benefits to the software security community.

Defining a better classification scheme can also lead to better
tools: a better understanding of the problems will help researchers
and practitioners create better methods for ferreting them out.

We propose a simple, intuitive taxonomy, which we believe is the
best approach for our stated purpose of organizing sets of
software security rules that will teach software developers about
security. Our approach is an alternative to a highly specific list of
attack types and vulnerabilities offered by CVE (Common
Vulnerabilities and Exposures) [7], which lacks in the way of
categorization and is operational in nature. Our classification
scheme is amenable to automatic identification and can be used
with static analysis tools for detecting real-world security
vulnerabilities in software. Our approach is also an alternative to
a number of broad classification schemes that focus exclusively
on operating-system-related vulnerabilities [1,2,3,12]. We discuss
these taxonomies in Section 2.

Section 3 motivates our work and discusses the relationship
between coding errors and corresponding attacks. It also defines
terminology used throughout the rest of this paper. Section 4
describes the scheme we propose. We refer to a type of coding
error as a phylum and a related set of phyla as a kingdom. A
complete description of each phylum is available on this paper’s
companion web site [8]. Section 5 draws parallels between two
other vulnerability lists [11,16]. Section 6 concludes.

2. RELATED WORK
All scientific disciplines benefit from a method for organizing
their topic of study, and software security is no different. The
value of a classification scheme is indisputable: a taxonomy is
necessary in order to create a common vocabulary and an
understanding of the ways computer security fails. The problem
of defining a taxonomy has been of great interest since the mid-
1970s. Several classification schemes have been proposed since
then [4].

One of the first studies of computer security and privacy was the
RISOS (Research Into Secure Operating Systems) project [1].
RISOS proposed and described seven categories of operating
system security defects. The purpose of the project was to
understand security problems in existing operating systems,
including MULTICS, TENEX, TOPS-10, GECOS, OS/MVT,
SDS-940, and EXEC-8, and to determine ways to enhance the
security of these systems. The categories proposed in the RISOS
project include:

• Incomplete Parameter Validation
• Inconsistent Parameter Validation
• Implicit Sharing of Privileges / Confidential Data
• Asynchronous Validation / Inadequate Serialization
• Inadequate Identification / Authentication / Authorization
• Violable Prohibition / Limit
• Exploitable Logic Error

The study shows that there are a small number of fundamental
defects that recur in different contexts.

The objective of the Protection Analysis (PA) project [3] was to
enable anybody (with or without any knowledge about computer
security) to discover security errors in the system by using a
pattern-directed approach. The idea was to use formalized
patterns to search for corresponding errors. The PA project was
the first project to explore automation of security defects
detection. However, the procedure for reducing defects to abstract
patterns was not comprehensive, and the technique could not be
properly automated. The database of vulnerabilities collected in
the study was never published.

Landwehr, Bull, McDermott, and Choi [12] classified each
vulnerability from three perspectives: genesis (how the problem
entered the system), time (at which point in the production cycle
the problem entered the system), and location (where in the
system the problem is manifest). Defects by genesis were broken
down into intentional and inadvertent, where the intentional class
was further broken down into malicious and non-malicious.
Defects by time of introduction were broken down into
development, maintenance, and operation, where the
development class was further broken down into design, source
code, and object code. Defects by location were broken down into
software and hardware, where the software class was further
broken down into operating system, support, and application.

The advantage of this type of hierarchical classification is the
convenience of identifying strategies to remedy security
problems. For example, if most security issues are introduced
inadvertently, increasing resources devoted to code reviews
becomes an effective way of increasing security of the system.
The biggest disadvantage of this scheme is inability to classify
some existing vulnerabilities. For example, if it is not known how

the vulnerability entered the system, it cannot be classified by
genesis at all.

The schemes discussed above have several limitations in
common. One of them is the breadth of the categories making
classification ambiguous. In some cases, one issue can be
classified in more than one category. The category names, while
useful to some groups of researchers, are too generic to be
quickly intuitive to a developer in the context of day-to-day work.
Additionally, these schemes focus mostly on operating system
security problems and do not classify the ones associated with
user-level software security. Furthermore, these taxonomies mix
implementation-level and design-level defects and are not
consistent about defining the categories with respect to the cause
or effect of the problem.

The work done by Landwehr, Bull, McDermott, and Choi was
later extended by Viega [18]. In addition to classifying
vulnerabilities according to genesis, time, and location, he also
classifies them by consequence (effects of the compromise
resulting from the error) and other miscellaneous information,
including platform, required resources, severity, likelihood of
exploit, avoidance and mitigation techniques, and related
problems. Each category is discussed in detail and provides
specific examples, including, in some cases code excerpts. This
“root-cause” database, as Viega calls it, strives to provide a
lexicon for the underlying problems that form the basis for the
many known security defects. As a result, not all of the issues in
this taxonomy are security problems. Furthermore, the “root-
cause” database allows the same problem to be classified
differently depending upon the interests of the person doing the
classification.

A good list of attack classes is provided by Cheswick, Bellovin,
and Rubin [5]. The list includes:

• Stealing Passwords
• Social Engineering
• Bugs and Back Doors
• Authentication Failures
• Protocol Failures
• Information Leakage
• Exponential Attacks—Viruses and Worms
• Denial-of-Service Attacks
• Botnets
• Active Attacks

A thorough description with examples is provided for each class.
These attack classes are applicable to a wide range of software,
including user-level enterprise software. This fact distinguishes
the list from other classification schemes. The classes are simple
and intuitive. However, this list defines attack classes rather than
categories of common coding errors that cause these attacks. A
similar, but a more thorough list of attack patterns is given by
Hoglund and McGraw [10]. Attack-based approaches are based
on knowing your enemy and assessing the possibility of similar
attack. They represent the black-hat side of the software security
equation. A taxonomy of coding errors is, strangely, more
positive in nature. This kind of thing is most useful to the white-
hat side of the software security world. In the end, both kinds of
approaches are valid and necessary.

The classification scheme proposed by Aslam [2] is the only
precise scheme discussed here. In this scheme, each vulnerability
belongs to exactly one category. The decision procedure for
classifying an error consists of a set of questions for each
vulnerability category. Aslam’s system is well-defined and offers
a simple way for identifying defects by similarity. Another
contribution of Aslam’s taxonomy is that it draws on software
fault studies to develop its categories. However, it focuses
exclusively on implementation issues in the UNIX operating
system and offers categories that are still too broad for our
purpose.

The most recent classification scheme we are aware of is
PLOVER (Preliminary List of Vulnerability Examples for
Researchers) [6]. Twenty-eight main categories that comprise
almost three hundred subcategories put Christey’s classification
scheme at the other end of the ambiguity spectrum—the
vulnerability categories are much more specific than in any of the
taxonomies discussed above. PLOVER is an extension of
Christey’s earlier work in assigning CVE (Common
Vulnerabilities and Exposures) [7] names to publicly known
vulnerabilities. An attempt to draw parallels between theoretical
attacks and vulnerabilities known in practice is an important
contribution and a big step forward from most of the earlier
schemes.

3. MOTIVATION
Most existing classification schemes, as is evident, begin with a
theoretical and comprehensive approach to classifying security
defects. Most research to date has been focusing on making the
scheme deterministic and precise, striving for a one-to-one
mapping between a vulnerability and the category the
vulnerability belongs to. Another facet of the same goal has been
to make classification consistent for different levels of
abstraction: the same vulnerability should be classified into the
same category regardless of whether it is considered from a
design or implementation perspective.

Most of the proposed schemes focus on classifying operating-
systems-related security defects rather than the errors in software
security. Furthermore, categories that comprise many of the
existing taxonomies were meant to be both broad and rigorously
defined instead of intuitive and specific. Overall, most of the
schemes cannot easily be applied to organizing security rules
used by a software developer who wants to learn how to build
secure software.

To further our goal of educating software developers about
common errors, we forgo the breadth and complexity essential to
theoretical completeness in favor of practical language centered
on programming concepts that are approachable and meaningful
to developers.

Before we proceed, we need to define the terminology borrowed
from Biology which we use to talk about our classification
scheme throughout the rest of the paper.

Definition 1. By phylum we mean a specific type of coding error.
For example, “Illegal Pointer Value” is a phylum.

Definition 2. A kingdom is a collection of phyla that share a
common theme. For example, “Input Validation and
Representation” is a kingdom.

In defining our taxonomy, we value concrete and specific
problems that are a real concern to software security over abstract
and theoretical ones that either have not been seen in practice or
are a result of high-level unsafe specification decisions. We did
not make it a goal to create a theoretically complete classification
scheme. Instead, we offer a scheme that is open-ended and
amenable to future expansion. We expect the list of important
phyla to change over time. We expect the important kingdoms to
change too, though at a lesser rate. Any evolution will be
influenced by trends in languages, frameworks, and libraries;
discovery of new types of attacks; new problems and verticals
toward which software is being applied; the regulatory landscape,
and social norms.

We value simplicity over parallelism in order to create kingdoms
that are intuitive to software developers who are not security
experts. As opposed to most of the classification schemes
discussed in Section 2, our taxonomy focuses on code-level
security problems that occur in a range of software applications
rather than errors that are most applicable to specific kinds of
software, such as operating systems. For example, “Buffer
Overflow” and “Command Injection” [8] are a part of our
taxonomy, while analysis of keystrokes and timing attacks on
SSH [17], as well as other kinds of covert-channel-type attacks,
are not included. There is no reason to believe that the kingdoms
we have chosen would not work for operating systems or other
types of specialized software, however there are many more
developers working on business applications and desktop
programs than on operating systems.

To better understand the relationship between the phyla our
taxonomy offers, consider a recently found vulnerability in
Adobe Reader 5.0.x for Unix [9]. The vulnerability is present in a
function UnixAppOpenFilePerform() that copies user-
supplied data into a fixed-size stack buffer using a call to
sprintf(). If the size of the user-supplied data is greater than
the size of the buffer it is being copied into, important
information, including the stack pointer, is overwritten. By
supplying a malicious PDF document, an attacker can execute
arbitrary commands on the target system. The attack is possible
because of a simple coding error—the absence of a check that
makes sure that the size of the user-supplied data is no greater
than the size of the destination buffer. In our experience,
developers will associate this check with a failure to code
defensively around the call to sprintf(). We classify this
coding error according to the attack it enables—“Buffer
Overflow.” We choose “Input Validation and Representation” as
the name of the kingdom “Buffer Overflow” phylum belongs to
because the lack of proper input validation is the reason the attack
is possible.

The coding errors represented by our phyla can all be detected by
static source code analysis tools. Source code analysis offers
developers an opportunity to get quick feedback about the code
that they write. We see great potential for educating developers
about coding errors by having them use a source code analysis
tool.

4. THE TAXONOMY
We now provide a summary of our taxonomy, which will also
appear in McGraw’s new book [13]. We split the phyla into
“seven-plus-one” high-level kingdoms that make sense to a
majority of developers. Seven of these kingdoms are dedicated to
errors in source code, and one is related to configuration and
environment issues. We present them in order of importance to
software security:

1. Input Validation and Representation
2. API Abuse
3. Security Features
4. Time and State
5. Errors
6. Code Quality
7. Encapsulation
*. Environment

Brief descriptions of the kingdoms and phyla are provided below.
Complete descriptions with source code examples are available
on the internet at http://vulncat.fortifysoftware.com.

Our taxonomy includes coding errors that occur in a variety of
programming languages. The most important among them are C
and C++, Java, and the .NET family including C# and ASP. Some
of our phyla are language-specific because the types of errors
they represent are applicable only to specific languages. One
example is the “Double Free” phylum. It identifies incorrect
usage of low-level memory routines. This phylum is specific to C
and C++ because neither Java nor the managed portions of the
.NET languages expose low-level memory APIs.

In addition to being language-specific, some of our phyla are
framework-specific. For example, the “Struts” phyla apply only
to the Struts framework and the “J2EE” phyla are only applicable
in the context of the J2EE applications. “Log Forging,” on the
other hand, is a more general phylum.

Our phylum list is certainly incomplete, but it is adaptable to
changes in trends and discoveries of new defects that will happen
over time. We focus on finding and classifying security-related
defects rather than more general quality or reliability issues. The
“Code Quality” kingdom could potentially contain many more
phyla, but we feel that the ones that we currently include are the
ones most likely to affect software security. Finally, we
concentrate on classifying errors that are most important to real-
world enterprise developers—we derive this information from the
literature, our colleagues, and our customers.

1. Input Validation and Representation
Input validation and representation problems are caused by
metacharacters, alternate encodings and numeric representations.
Security problems result from trusting input. The issues include:
“Buffer Overflows,” “Cross-Site Scripting” attacks, “SQL
Injection,” and many others.

• Buffer Overflow. Writing outside the bounds of allocated
memory can corrupt data, crash the program, or cause the
execution of an attack payload.

• Command Injection. Executing commands from an
untrusted source or in an untrusted environment can cause
an application to execute malicious commands on behalf of
an attacker.

• Cross-Site Scripting. Sending unvalidated data to a Web
browser can result in the browser executing malicious code
(usually scripts).

• Format String. Allowing an attacker to control a
function’s format string may result in a buffer overflow.

• HTTP Response Splitting. Writing unvalidated data into
an HTTP header allows an attacker to specify the entirety
of the HTTP response rendered by the browser.

• Illegal Pointer Value. This function can return a pointer to
memory outside of the buffer to be searched. Subsequent
operations on the pointer may have unintended
consequences.

• Integer Overflow. Not accounting for integer overflow can
result in logic errors or buffer overflows.

• Log Forging. Writing unvalidated user input into log files
can allow an attacker to forge log entries or inject malicious
content into logs.

• Path Manipulation. Allowing user input to control paths
used by the application may enable an attacker to access
otherwise protected files.

• Process Control. Executing commands or loading libraries
from an untrusted source or in an untrusted environment
can cause an application to execute malicious commands
(and payloads) on behalf of an attacker.

• Resource Injection. Allowing user input to control
resource identifiers may enable an attacker to access or
modify otherwise protected system resources.

• Setting Manipulation. Allowing external control of system
settings can disrupt service or cause an application to
behave in unexpected ways.

• SQL Injection. Constructing a dynamic SQL statement
with user input may allow an attacker to modify the
statement’s meaning or to execute arbitrary SQL
commands.

• String Termination Error. Relying on proper string
termination may result in a buffer overflow.

• Struts: Duplicate Validation Forms. Multiple validation
forms with the same name indicate that validation logic is
not up-to-date.

• Struts: Erroneous validate() Method. The validator form
defines a validate() method but fails to call
super.validate().

• Struts: Form Bean Does Not Extend Validation Class.
All Struts forms should extend a Validator class.

• Struts: Form Field Without Validator. Every field in a
form should be validated in the corresponding validation
form.

• Struts: Plug-in Framework Not In Use. Use the Struts
Validator to prevent vulnerabilities that result from
unchecked input.

• Struts: Unused Validation Form. An unused validation
form indicates that validation logic is not up-to-date.

• Struts: Unvalidated Action Form. Every Action Form
must have a corresponding validation form.

• Struts: Validator Turned Off. This Action Form mapping
disables the form’s validate() method.

• Struts: Validator Without Form Field. Validation fields
that do not appear in forms they are associated with indicate
that the validation logic is out of date.

• Unsafe JNI. Improper use of the Java Native Interface
(JNI) can render Java applications vulnerable to security

bugs in other languages. Language-based encapsulation is
broken.

• Unsafe Reflection. An attacker may be able to create
unexpected control flow paths through the application,
potentially bypassing security checks.

• XML Validation. Failure to enable validation when
parsing XML gives an attacker the opportunity to supply
malicious input.

2. API Abuse
An API is a contract between a caller and a callee. The most
common forms of API abuse are caused by the caller failing to
honor its end of this contract. For example, if a program fails to
call chdir() after calling chroot(), it violates the contract
that specifies how to change the active root directory in a secure
fashion. Another good example of library abuse is expecting the
callee to return trustworthy DNS information to the caller. In this
case, the caller abuses the callee API by making certain
assumptions about its behavior (that the return value can be used
for authentication purposes). One can also violate the caller-callee
contract from the other side. For example, if a coder subclasses
SecureRandom and returns a non-random value, the contract is
violated.

• Dangerous Function. Functions that cannot be used safely
should never be used.

• Directory Restriction. Improper use of the chroot()
system call may allow attackers to escape a chroot jail.

• Heap Inspection. Do not use realloc() to resize
buffers that store sensitive information.

• J2EE Bad Practices: getConnection(). The J2EE
standard forbids the direct management of connections.

• J2EE Bad Practices: Sockets. Socket-based
communication in web applications is prone to error.

• Often Misused: Authentication. Do not rely on the name
the getlogin() family of functions returns because it is
easy to spoof.

• Often Misused: Exception Handling. A dangerous
function can throw an exception, potentially causing the
program to crash.

• Often Misused: File System. Passing an inadequately-
sized output buffer to a path manipulation function can
result in a buffer overflow.

• Often Misused: Privilege Management. Failure to adhere
to the principle of least privilege amplifies the risk posed by
other vulnerabilities.

• Often Misused: Strings. Functions that manipulate strings
encourage buffer overflows.

• Unchecked Return Value. Ignoring a method’s return
value can cause the program to overlook unexpected states
and conditions.

3. Security Features
Software security is not security software. Here we're concerned
with topics like authentication, access control, confidentiality,
cryptography, and privilege management.

• Insecure Randomness. Standard pseudo-random number
generators cannot withstand cryptographic attacks.

• Least Privilege Violation. The elevated privilege level
required to perform operations such as chroot() should
be dropped immediately after the operation is performed.

• Missing Access Control. The program does not perform
access control checks in a consistent manner across all
potential execution paths.

• Password Management. Storing a password in plaintext
may result in a system compromise.

• Password Management: Empty Password in Config
File. Using an empty string as a password is insecure.

• Password Management: Hard-Coded Password. Hard
coded passwords may compromise system security in a way
that cannot be easily remedied.

• Password Management: Password in Config File.
Storing a password in a configuration file may result in
system compromise.

• Password Management: Weak Cryptography. Obscuring
a password with a trivial encoding does not protect the
password.

• Privacy Violation. Mishandling private information, such
as customer passwords or social security numbers, can
compromise user privacy and is often illegal.

4. Time and State
Distributed computation is about time and state. That is, in order
for more than one component to communicate, state must be
shared, and all that takes time.

Most programmers anthropomorphize their work. They think
about one thread of control carrying out the entire program in the
same way they would if they had to do the job themselves.
Modern computers, however, switch between tasks very quickly,
and in multi-core, multi-CPU, or distributed systems, two events
may take place at exactly the same time. Defects rush to fill the
gap between the programmer's model of how a program executes
and what happens in reality. These defects are related to
unexpected interactions between threads, processes, time, and
information. These interactions happen through shared state:
semaphores, variables, the file system, and, basically, anything
that can store information.

• Deadlock. Inconsistent locking discipline can lead to
deadlock.

• Failure to Begin a New Session upon Authentication.
Using the same session identifier across an authentication
boundary allows an attacker to hijack authenticated
sessions.

• File Access Race Condition: TOCTOU. The window of
time between when a file property is checked and when the
file is used can be exploited to launch a privilege escalation
attack.

• Insecure Temporary File. Creating and using
insecure temporary files can leave application and system
data vulnerable to attack.

• J2EE Bad Practices: System.exit(). A Web
application should not attempt to shut down its container.

• J2EE Bad Practices: Threads. Thread management in a
Web application is forbidden in some circumstances and is
always highly error prone.

• Signal Handling Race Conditions. Signal handlers may
change shared state relied upon by other signal handlers or
application code causing unexpected behavior.

5. Errors
Errors and error handling represent a class of API. Errors related
to error handling are so common that they deserve a special
kingdom of their own. As with “API Abuse,” there are two ways
to introduce an error-related security vulnerability: the most
common one is handling errors poorly (or not at all). The second
is producing errors that either give out too much information (to
possible attackers) or are difficult to handle.

• Catch NullPointerException. Catching
NullPointerException should not be used as an
alternative to programmatic checks to prevent dereferencing
a null pointer.

• Empty Catch Block. Ignoring exceptions and other error
conditions may allow an attacker to induce unexpected
behavior unnoticed.

• Overly-Broad Catch Block. Catching overly broad
exceptions promotes complex error handling code that is
more likely to contain security vulnerabilities.

• Overly-Broad Throws Declaration. Throwing overly
broad exceptions promotes complex error handling code
that is more likely to contain security vulnerabilities.

6. Code Quality
Poor code quality leads to unpredictable behavior. From a user's
perspective that often manifests itself as poor usability. For an
attacker it provides an opportunity to stress the system in
unexpected ways.

• Double Free. Calling free() twice on the same memory
address can lead to a buffer overflow.

• Inconsistent Implementations. Functions with
inconsistent implementations across operating systems and
operating system versions cause portability problems.

• Memory Leak. Memory is allocated but never freed
leading to resource exhaustion.

• Null Dereference. The program can potentially dereference
a null pointer, thereby raising a
NullPointerException.

• Obsolete. The use of deprecated or obsolete functions may
indicate neglected code.

• Undefined Behavior. The behavior of this function is
undefined unless its control parameter is set to a specific
value.

• Uninitialized Variable. The program can potentially use a
variable before it has been initialized.

• Unreleased Resource. The program can potentially fail to
release a system resource.

• Use After Free. Referencing memory after it has been
freed can cause a program to crash.

7. Encapsulation
Encapsulation is about drawing strong boundaries. In a web
browser that might mean ensuring that your mobile code cannot
be abused by other mobile code. On the server it might mean
differentiation between validated data and unvalidated data,
between one user's data and another's, or between data users are
allowed to see and data that they are not.

• Comparing Classes by Name. Comparing classes by name
can lead a program to treat two classes as the same when
they actually differ.

• Data Leaking Between Users. Data can "bleed" from one
session to another through member variables of singleton
objects, such as Servlets, and objects from a shared pool.

• Leftover Debug Code. Debug code can create unintended
entry points in an application.

• Mobile Code: Object Hijack. Attackers can use
Cloneable objects to create new instances of an object
without calling its constructor.

• Mobile Code: Use of Inner Class. Inner classes are
translated into classes that are accessible at package scope
and may expose code that the programmer intended to keep
private to attackers.

• Mobile Code: Non-Final Public Field. Non-final public
variables can be manipulated by an attacker to inject
malicious values.

• Private Array-Typed Field Returned From a Public
Method. The contents of a private array may be altered
unexpectedly through a reference returned from a public
method.

• Public Data Assigned to Private Array-Typed Field.
Assigning public data to a private array is equivalent giving
public access to the array.

• System Information Leak. Revealing system data or
debugging information helps an adversary learn about the
system and form an attack plan.

• Trust Boundary Violation. Commingling trusted and
untrusted data in the same data structure encourages
programmers to mistakenly trust unvalidated data.

*. Environment
This section includes everything that is outside of the source code
but is still critical to the security of the product that is being
created. Because the issues covered by this kingdom are not
directly related to source code, we separated it from the rest of the
kingdoms.

• ASP .NET Misconfiguration: Creating Debug Binary.
Debugging messages help attackers learn about the system
and plan a form of attack.

• ASP .NET Misconfiguration: Missing Custom Error
Handling. An ASP .NET application must enable custom
error pages in order to prevent attackers from mining
information from the framework’s built-in responses.

• ASP .NET Misconfiguration: Password in
Configuration File. Do not hardwire passwords into your
software.

• Insecure Compiler Optimization. Improperly scrubbing
sensitive data from memory can compromise security.

• J2EE Misconfiguration: Insecure Transport. The
application configuration should ensure that SSL is used for
all access-controlled pages.

• J2EE Misconfiguration: Insufficient Session-ID Length.
Session identifiers should be at least 128 bits long to
prevent brute-force session guessing.

• J2EE Misconfiguration: Missing Error Handling. A
Web application must define a default error page for 404
errors, 500 errors and to catch java.lang.Throwable
exceptions to prevent attackers from mining information
from the application container’s built-in error response.

• J2EE Misconfiguration: Unsafe Bean Declaration.
Entity beans should not be declared remote.

• J2EE Misconfiguration: Weak Access Permissions.
Permission to invoke EJB methods should not be granted to
the ANYONE role.

5. SEVEN PLUS OR MINUS TWO
There are several other software security problem lists that have
been recently developed and made available. The first at one
month old, is called the “19 Deadly Sins of Software Security”
[11]. The second is the “OWASP Top Ten Most Critical Web
Application Security Vulnerabilities” available on the web [16].
Both share one unfortunate property—an overabundance of
complexity. People are good at keeping track of seven things
(plus or minus two) [15]. We used this as a hard constraint and
attempted to keep the number of kingdoms in our taxonomy down
to seven (plus one).

By discussing these lists with respect to the scheme we propose,
we illustrate and emphasize the superiority of our taxonomy. The
main limitation of both lists is that they mix specific types of
errors and vulnerability classes, and talk about them at the same
level of abstraction. The nineteen deadly sins include the “Buffer
Overflows” and “Failing to protect network traffic” categories at
the same level, even though the first is a very specific coding
error, while the second could be a class comprised of various
kinds of errors. OWASP’s top ten includes “Cross Site Scripting
(XSS) Flaws” and “Insecure Configuration Management” at the
same level as well.

Our classification scheme consists of two hierarchical levels:
kingdoms and phyla. The kingdoms represent the classes of
errors, while the phyla that comprise the kingdoms represent
specific errors. We would like to point out that even though the
structure of our classification scheme is different from the
structure of the lists described above, the categories that comprise
these lists can be easily mapped to our kingdoms. Here is the
mapping for the nineteen sins:

1. Input Validation and Representation
Buffer Overflows
Command Injection
Cross-Site Scripting
Format String Problems
Integer Range Errors
SQL Injection

2. API Abuse
Trusting Network Address Information

3. Security Features
Failing to Protect Network Traffic
Failing to Store and Protect Data
Failing to Use Cryptographically Strong Random

Numbers
Improper File Access
Improper Use of SSL
Use of Weak Password-Based Systems
Unauthenticated Key Exchange

4. Time and State
Signal Race Conditions
Use of “Magic” URLs and Hidden Forms

5. Errors
Failure to Handle Errors

6. Code Quality

Poor Usability
7. Encapsulation

Information Leakage
*. Environment

Here is the mapping for the OWASP top ten:

1. Input Validation and Representation
Buffer Overflows
Cross-Site Scripting (XSS) Flaws
Injection Flaws
Unvalidated Input

2. API Abuse
3. Security Features

Broken Access Control
Insecure Storage

4. Time and State
Broken Authentication and Session Management

5. Errors
Improper Error Handling

6. Code Quality
Denial of Service

7. Encapsulation
*. Environment

Insecure Configuration Management

6. CONCLUSION
We present a simple, intuitive taxonomy of common coding
errors that affect security. We discuss the relationship between
vulnerability phyla we define and corresponding attacks, and
provide descriptions of each kingdom in the proposed taxonomy.

We point out the important differences between the scheme we
propose and those discussed in related work. The classification
scheme we present is designed to organize security rules, and thus
be of help to software developers who are concerned with writing
secure code and being able to automate detection of security
defects. These goals make our scheme simple, intuitive to a
developer, practical rather than theoretical and comprehensive,
amenable to automatic identification of errors with static analysis
tools, as well as adaptable with respect to changes in trends that
can happen over time.

7. REFERENCES
[1] R.P. Abbott, J. S. Chin, J.E. Donnelley, W.L. Konigsford, S.

Tokubo, and D.A. Webb. Security Analysis and
Enhancements of Computer Operating Systems. NBSIR 76-
1041, National Bureau of Standards, ICST, Washington,
D.C., 1976.

[2] T. Aslam. A Taxonomy of Security Faults in the Unix
Operating System. Master’s Thesis, Purdue University,
1995.

[3] R. Bisbey and D. Hollingworth. Protection Analysis Project
Final Report. ISI/RR-78-13, DTIC AD A056816,
USC/Information Sciences Institute, 1978.

[4] M. Bishop. Computer Security: Art and Science. Addison-
Wesley, December 2002.

[5] W. Cheswick, S. Bellovin, and A. Rubin. Firewalls and
Internet Security: Repelling the Wily Hacker, Second
Edition. Addison-Wesley, 2003.

[6] S. Christey. PLOVER—Preliminary List of Vulnerability
Examples for Researchers. Draft, August 2005.

[7] CVE – Common Vulnerabilities and Exposures.
http://www.cve.mitre.org/.

[8] Fortify Descriptions. http://vulncat.fortifysoftware.com.
[9] Fortify Extra. Adobe Reader for Unix Remote Buffer

Overflow.
http://extra.fortifysoftware.com/archives/2005/07/adobe_rea
der_fo_1.html.

[10] G. Hoglund and G. McGraw. Exploiting Software: How to
Break Code. Addison-Wesley, February 2004.

[11] M. Howard, D. LeBlanc, and J. Viega. 19 Deadly Sins of
Software Security. McGraw-Hill Osborne Media, July 2005.

[12] C. E. Landwehr, A. R. Bull, J. P. McDermott, W. S. Choi. A
Taxonomy of Computer Program Security Flaws, with
Examples. ACM Computing Surveys, Vol. 26, No. 3,
September 1994, pp. 211-254.

[13] G. McGraw. Software Security: Building Security In.
Addison-Wesley, to appear in 2006.

[14] G. McGraw. From the Ground Up: The DIMACS Software
Security Workshop. IEEE Security & Privacy, Vol. 1, No.
2, March-April 2003, pp. 59-66.

[15] G. Miller. The Magic Number Seven, Plus or Minus Two:
Some Limits on our Capacity for Processing Information.
Psychological Review, Vol. 63, No. 2, 1956.

[16] OWASP Top Ten Most Critical Web Application Security
Vulnerabilities.
http://www.owasp.org/documentation/topten.html.

[17] D. Song, D. Wagner, and X. Tian. Timing Analysis of
Keystrokes and Timing Attacks on SSH. In 10th USENIX
Security Symposium Proceedings, August 2001, pp. 337-
352.

[18] J. Viega.. The CLASP Application Security Process.
Volume 1.1 Training Manual.

