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ABSTRACT 
We want to help developers and security practitioners understand 
common types of coding errors that lead to vulnerabilities. By 
organizing these errors into a simple taxonomy, we can teach 
developers to recognize categories of problems that lead to 
vulnerabilities and identify existing errors as they build software. 

The information contained in our taxonomy is most effectively 
enforced via a tool.  In fact, all of the errors included in our 
taxonomy are amenable to automatic identification using static 
source code analysis techniques. 

We demonstrate why our taxonomy is not only simpler, but also 
more comprehensive than other modern taxonomy proposals and 
vulnerability lists. We provide an in-depth explanation and one or 
more code-level examples for each of the errors on a companion 
web site: http://vulncat.fortifysoftware.com. 

Categories and Subject Descriptors 
D.4.6 [Operating Systems]: Security and Protection – access 
controls, authentication, cryptographic controls, information flow 
controls, invasive software. K.6.5 [Management of Computing 
and Information Systems]: Security and Protection – 
authentication, invasive software, unauthorized access. 

General Terms 
Security, standardization. 

Keywords 
Software security, security defects, taxonomy, static analysis 
tools. 

1. INTRODUCTION 
We believe that software developers play a crucial role in 
building secure computer systems. Because roughly half of all 
security defects are introduced at the source code level [14], 
coding errors (a.k.a. “bugs”) are a critical problem in software 
security. 
 

In defining this taxonomy of coding errors, our primary goal is to 
organize sets of security rules that can be used to help software 
developers understand the kinds of errors that have an impact on 
security. We believe that one of the most effective ways to deliver 
this information to developers is through the use of tools. Our 
hope is that, by better understanding how systems fail, developers 
will better analyze the systems they create, more readily identify 
and address security problems when they see them, and generally 
avoid repeating the same mistakes in the future. 
 
When put to work in a tool, a set of security rules organized 
according to this taxonomy is a powerful teaching mechanism.  
Because developers today are by and large unaware of the myriad 
ways they can introduce security problems into their work, 
publication of a taxonomy like this should provide tangible 
benefits to the software security community. 
 
Defining a better classification scheme can also lead to better 
tools: a better understanding of the problems will help researchers 
and practitioners create better methods for ferreting them out. 
 
We propose a simple, intuitive taxonomy, which we believe is the 
best approach for our stated purpose of organizing sets of 
software security rules that will teach software developers about 
security. Our approach is an alternative to a highly specific list of 
attack types and vulnerabilities offered by CVE (Common 
Vulnerabilities and Exposures) [7], which lacks in the way of 
categorization and is operational in nature. Our classification 
scheme is amenable to automatic identification and can be used 
with static analysis tools for detecting real-world security 
vulnerabilities in software. Our approach is also an alternative to 
a number of broad classification schemes that focus exclusively 
on operating-system-related vulnerabilities [1,2,3,12]. We discuss 
these taxonomies in Section 2.  
 
Section 3 motivates our work and discusses the relationship 
between coding errors and corresponding attacks. It also defines 
terminology used throughout the rest of this paper. Section 4 
describes the scheme we propose. We refer to a type of coding 
error as a phylum and a related set of phyla as a kingdom. A 
complete description of each phylum is available on this paper’s 
companion web site [8]. Section 5 draws parallels between two 
other vulnerability lists [11,16]. Section 6 concludes. 



2. RELATED WORK 
All scientific disciplines benefit from a method for organizing 
their topic of study, and software security is no different. The 
value of a classification scheme is indisputable: a taxonomy is 
necessary in order to create a common vocabulary and an 
understanding of the ways computer security fails.  The problem 
of defining a taxonomy has been of great interest since the mid-
1970s. Several classification schemes have been proposed since 
then [4].  
 
One of the first studies of computer security and privacy was the 
RISOS (Research Into Secure Operating Systems) project [1].  
RISOS proposed and described seven categories of operating 
system security defects. The purpose of the project was to 
understand security problems in existing operating systems, 
including MULTICS, TENEX, TOPS-10, GECOS, OS/MVT, 
SDS-940, and EXEC-8, and to determine ways to enhance the 
security of these systems. The categories proposed in the RISOS 
project include: 

• Incomplete Parameter Validation 
• Inconsistent Parameter Validation 
• Implicit Sharing of Privileges / Confidential Data 
• Asynchronous Validation / Inadequate Serialization 
• Inadequate Identification  / Authentication / Authorization 
• Violable Prohibition / Limit 
• Exploitable Logic Error 

The study shows that there are a small number of fundamental 
defects that recur in different contexts. 
 
The objective of the Protection Analysis (PA) project [3] was to 
enable anybody (with or without any knowledge about computer 
security) to discover security errors in the system by using a 
pattern-directed approach. The idea was to use formalized 
patterns to search for corresponding errors. The PA project was 
the first project to explore automation of security defects 
detection. However, the procedure for reducing defects to abstract 
patterns was not comprehensive, and the technique could not be 
properly automated. The database of vulnerabilities collected in 
the study was never published. 
 
Landwehr, Bull, McDermott, and Choi [12] classified each 
vulnerability from three perspectives: genesis (how the problem 
entered the system), time (at which point in the production cycle 
the problem entered the system), and location (where in the 
system the problem is manifest). Defects by genesis were broken 
down into intentional and inadvertent, where the intentional class 
was further broken down into malicious and non-malicious. 
Defects by time of introduction were broken down into 
development, maintenance, and operation, where the 
development class was further broken down into design, source 
code, and object code. Defects by location were broken down into 
software and hardware, where the software class was further 
broken down into operating system, support, and application.  
 
The advantage of this type of hierarchical classification is the 
convenience of identifying strategies to remedy security 
problems. For example, if most security issues are introduced 
inadvertently, increasing resources devoted to code reviews 
becomes an effective way of increasing security of the system. 
The biggest disadvantage of this scheme is inability to classify 
some existing vulnerabilities. For example, if it is not known how 

the vulnerability entered the system, it cannot be classified by 
genesis at all.  
 
The schemes discussed above have several limitations in 
common. One of them is the breadth of the categories making 
classification ambiguous. In some cases, one issue can be 
classified in more than one category. The category names, while 
useful to some groups of researchers, are too generic to be 
quickly intuitive to a developer in the context of day-to-day work. 
Additionally, these schemes focus mostly on operating system 
security problems and do not classify the ones associated with 
user-level software security. Furthermore, these taxonomies mix 
implementation-level and design-level defects and are not 
consistent about defining the categories with respect to the cause 
or effect of the problem.  
 
The work done by Landwehr, Bull, McDermott, and Choi was 
later extended by Viega [18]. In addition to classifying 
vulnerabilities according to genesis, time, and location, he also 
classifies them by consequence (effects of the compromise 
resulting from the error) and other miscellaneous information, 
including platform, required resources, severity, likelihood of 
exploit, avoidance and mitigation techniques, and related 
problems. Each category is discussed in detail and provides 
specific examples, including, in some cases code excerpts. This 
“root-cause” database, as Viega calls it, strives to provide a 
lexicon for the underlying problems that form the basis for the 
many known security defects. As a result, not all of the issues in 
this taxonomy are security problems. Furthermore, the “root-
cause” database allows the same problem to be classified 
differently depending upon the interests of the person doing the 
classification. 
 
A good list of attack classes is provided by Cheswick, Bellovin, 
and Rubin [5]. The list includes: 

• Stealing Passwords 
• Social Engineering 
• Bugs and Back Doors 
• Authentication Failures 
• Protocol Failures 
• Information Leakage 
• Exponential Attacks—Viruses and Worms 
• Denial-of-Service Attacks 
• Botnets 
• Active Attacks 

A thorough description with examples is provided for each class. 
These attack classes are applicable to a wide range of software, 
including user-level enterprise software. This fact distinguishes 
the list from other classification schemes. The classes are simple 
and intuitive. However, this list defines attack classes rather than 
categories of common coding errors that cause these attacks. A 
similar, but a more thorough list of attack patterns is given by 
Hoglund and McGraw [10]. Attack-based approaches are based 
on knowing your enemy and assessing the possibility of similar 
attack. They represent the black-hat side of the software security 
equation. A taxonomy of coding errors is, strangely, more 
positive in nature. This kind of thing is most useful to the white-
hat side of the software security world. In the end, both kinds of 
approaches are valid and necessary. 
 



The classification scheme proposed by Aslam [2] is the only 
precise scheme discussed here. In this scheme, each vulnerability 
belongs to exactly one category. The decision procedure for 
classifying an error consists of a set of questions for each 
vulnerability category.  Aslam’s system is well-defined and offers 
a simple way for identifying defects by similarity. Another 
contribution of Aslam’s taxonomy is that it draws on software 
fault studies to develop its categories. However, it focuses 
exclusively on implementation issues in the UNIX operating 
system and offers categories that are still too broad for our 
purpose. 
 
The most recent classification scheme we are aware of is 
PLOVER (Preliminary List of Vulnerability Examples for 
Researchers) [6]. Twenty-eight main categories that comprise 
almost three hundred subcategories put Christey’s classification 
scheme at the other end of the ambiguity spectrum—the 
vulnerability categories are much more specific than in any of the 
taxonomies discussed above. PLOVER is an extension of 
Christey’s earlier work in assigning CVE (Common 
Vulnerabilities and Exposures) [7] names to publicly known 
vulnerabilities. An attempt to draw parallels between theoretical 
attacks and vulnerabilities known in practice is an important 
contribution and a big step forward from most of the earlier 
schemes. 

3. MOTIVATION 
Most existing classification schemes, as is evident, begin with a 
theoretical and comprehensive approach to classifying security 
defects. Most research to date has been focusing on making the 
scheme deterministic and precise, striving for a one-to-one 
mapping between a vulnerability and the category the 
vulnerability belongs to. Another facet of the same goal has been 
to make classification consistent for different levels of 
abstraction: the same vulnerability should be classified into the 
same category regardless of whether it is considered from a 
design or implementation perspective. 
 
Most of the proposed schemes focus on classifying operating-
systems-related security defects rather than the errors in software 
security. Furthermore, categories that comprise many of the 
existing taxonomies were meant to be both broad and rigorously 
defined instead of intuitive and specific. Overall, most of the 
schemes cannot easily be applied to organizing security rules 
used by a software developer who wants to learn how to build 
secure software. 
 
To further our goal of educating software developers about 
common errors, we forgo the breadth and complexity essential to 
theoretical completeness in favor of practical language centered 
on programming concepts that are approachable and meaningful 
to developers. 
 
Before we proceed, we need to define the terminology borrowed 
from Biology which we use to talk about our classification 
scheme throughout the rest of the paper.  
 
Definition 1. By phylum we mean a specific type of coding error. 
For example, “Illegal Pointer Value” is a phylum. 
 

Definition 2. A kingdom is a collection of phyla that share a 
common theme. For example, “Input Validation and 
Representation” is a kingdom. 
 
In defining our taxonomy, we value concrete and specific 
problems that are a real concern to software security over abstract 
and theoretical ones that either have not been seen in practice or 
are a result of high-level unsafe specification decisions. We did 
not make it a goal to create a theoretically complete classification 
scheme. Instead, we offer a scheme that is open-ended and 
amenable to future expansion. We expect the list of important 
phyla to change over time. We expect the important kingdoms to 
change too, though at a lesser rate. Any evolution will be 
influenced by trends in languages, frameworks, and libraries; 
discovery of new types of attacks; new problems and verticals 
toward which software is being applied; the regulatory landscape, 
and social norms. 
 
We value simplicity over parallelism in order to create kingdoms 
that are intuitive to software developers who are not security 
experts. As opposed to most of the classification schemes 
discussed in Section 2, our taxonomy focuses on code-level 
security problems that occur in a range of software applications 
rather than errors that are most applicable to specific kinds of 
software, such as operating systems. For example, “Buffer 
Overflow” and “Command Injection” [8] are a part of our 
taxonomy, while analysis of keystrokes and timing attacks on 
SSH [17], as well as other kinds of covert-channel-type attacks, 
are not included. There is no reason to believe that the kingdoms 
we have chosen would not work for operating systems or other 
types of specialized software, however there are many more 
developers working on business applications and desktop 
programs than on operating systems. 
 
To better understand the relationship between the phyla our 
taxonomy offers, consider a recently found vulnerability in 
Adobe Reader 5.0.x for Unix [9]. The vulnerability is present in a 
function UnixAppOpenFilePerform() that copies user-
supplied data into a fixed-size stack buffer using a call to 
sprintf(). If the size of the user-supplied data is greater than 
the size of the buffer it is being copied into, important 
information, including the stack pointer, is overwritten. By 
supplying a malicious PDF document, an attacker can execute 
arbitrary commands on the target system. The attack is possible 
because of a simple coding error—the absence of a check that 
makes sure that the size of the user-supplied data is no greater 
than the size of the destination buffer. In our experience, 
developers will associate this check with a failure to code 
defensively around the call to sprintf(). We classify this 
coding error according to the attack it enables—“Buffer 
Overflow.” We choose “Input Validation and Representation” as 
the name of the kingdom “Buffer Overflow” phylum belongs to 
because the lack of proper input validation is the reason the attack 
is possible. 
 
The coding errors represented by our phyla can all be detected by 
static source code analysis tools. Source code analysis offers 
developers an opportunity to get quick feedback about the code 
that they write. We see great potential for educating developers 
about coding errors by having them use a source code analysis 
tool. 



4. THE TAXONOMY 
We now provide a summary of our taxonomy, which will also 
appear in McGraw’s new book [13]. We split the phyla into 
“seven-plus-one” high-level kingdoms that make sense to a 
majority of developers. Seven of these kingdoms are dedicated to 
errors in source code, and one is related to configuration and 
environment issues. We present them in order of importance to 
software security: 

1. Input Validation and Representation 
2. API Abuse 
3. Security Features 
4. Time and State 
5. Errors  
6. Code Quality  
7. Encapsulation  
*.     Environment 

Brief descriptions of the kingdoms and phyla are provided below. 
Complete descriptions with source code examples are available 
on the internet at http://vulncat.fortifysoftware.com. 
 
Our taxonomy includes coding errors that occur in a variety of 
programming languages. The most important among them are C 
and C++, Java, and the .NET family including C# and ASP. Some 
of our phyla are language-specific because the types of errors 
they represent are applicable only to specific languages. One 
example is the “Double Free” phylum. It identifies incorrect 
usage of low-level memory routines. This phylum is specific to C 
and C++ because neither Java nor the managed portions of the  
.NET languages expose low-level memory APIs. 
 
In addition to being language-specific, some of our phyla are 
framework-specific. For example, the “Struts” phyla apply only 
to the Struts framework and the “J2EE” phyla are only applicable 
in the context of the J2EE applications. “Log Forging,” on the 
other hand, is a more general phylum. 
 
Our phylum list is certainly incomplete, but it is adaptable to 
changes in trends and discoveries of new defects that will happen 
over time. We focus on finding and classifying security-related 
defects rather than more general quality or reliability issues. The 
“Code Quality” kingdom could potentially contain many more 
phyla, but we feel that the ones that we currently include are the 
ones most likely to affect software security. Finally, we 
concentrate on classifying errors that are most important to real-
world enterprise developers—we derive this information from the 
literature, our colleagues, and our customers. 

1. Input Validation and Representation 
Input validation and representation problems are caused by 
metacharacters, alternate encodings and numeric representations.  
Security problems result from trusting input. The issues include: 
“Buffer Overflows,” “Cross-Site Scripting” attacks, “SQL 
Injection,” and many others.  

• Buffer Overflow. Writing outside the bounds of allocated 
memory can corrupt data, crash the program, or cause the 
execution of an attack payload. 

• Command Injection. Executing commands from an 
untrusted source or in an untrusted environment can cause 
an application to execute malicious commands on behalf of 
an attacker. 

• Cross-Site Scripting. Sending unvalidated data to a Web 
browser can result in the browser executing malicious code 
(usually scripts). 

• Format String. Allowing an attacker to control a 
function’s format string may result in a buffer overflow. 

• HTTP Response Splitting. Writing unvalidated data into 
an HTTP header allows an attacker to specify the entirety 
of the HTTP response rendered by the browser. 

• Illegal Pointer Value. This function can return a pointer to 
memory outside of the buffer to be searched.  Subsequent 
operations on the pointer may have unintended 
consequences.  

• Integer Overflow. Not accounting for integer overflow can 
result in logic errors or buffer overflows. 

• Log Forging. Writing unvalidated user input into log files 
can allow an attacker to forge log entries or inject malicious 
content into logs. 

• Path Manipulation. Allowing user input to control paths 
used by the application may enable an attacker to access 
otherwise protected files.  

• Process Control. Executing commands or loading libraries 
from an untrusted source or in an untrusted environment 
can cause an application to execute malicious commands 
(and payloads) on behalf of an attacker. 

• Resource Injection. Allowing user input to control 
resource identifiers may enable an attacker to access or 
modify otherwise protected system resources. 

• Setting Manipulation. Allowing external control of system 
settings can disrupt service or cause an application to 
behave in unexpected ways. 

• SQL Injection. Constructing a dynamic SQL statement 
with user input may allow an attacker to modify the 
statement’s meaning or to execute arbitrary SQL 
commands. 

• String Termination Error. Relying on proper string 
termination may result in a buffer overflow. 

• Struts: Duplicate Validation Forms. Multiple validation 
forms with the same name indicate that validation logic is 
not up-to-date. 

• Struts: Erroneous validate() Method. The validator form 
defines a validate() method but fails to call 
super.validate(). 

• Struts: Form Bean Does Not Extend Validation Class. 
All Struts forms should extend a Validator class. 

• Struts: Form Field Without Validator. Every field in a 
form should be validated in the corresponding validation 
form. 

• Struts: Plug-in Framework Not In Use. Use the Struts 
Validator to prevent vulnerabilities that result from 
unchecked input. 

• Struts: Unused Validation Form. An unused validation 
form indicates that validation logic is not up-to-date. 

• Struts: Unvalidated Action Form. Every Action Form 
must have a corresponding validation form. 

• Struts: Validator Turned Off. This Action Form mapping 
disables the form’s validate() method. 

• Struts: Validator Without Form Field. Validation fields 
that do not appear in forms they are associated with indicate 
that the validation logic is out of date. 

• Unsafe JNI. Improper use of the Java Native Interface 
(JNI) can render Java applications vulnerable to security 



bugs in other languages.  Language-based encapsulation is 
broken. 

• Unsafe Reflection. An attacker may be able to create 
unexpected control flow paths through the application, 
potentially bypassing security checks. 

• XML Validation. Failure to enable validation when 
parsing XML gives an attacker the opportunity to supply 
malicious input. 

2. API Abuse 
An API is a contract between a caller and a callee. The most 
common forms of API abuse are caused by the caller failing to 
honor its end of this contract. For example, if a program fails to 
call chdir() after calling chroot(), it violates the contract 
that specifies how to change the active root directory in a secure 
fashion. Another good example of library abuse is expecting the 
callee to return trustworthy DNS information to the caller. In this 
case, the caller abuses the callee API by making certain 
assumptions about its behavior (that the return value can be used 
for authentication purposes). One can also violate the caller-callee 
contract from the other side. For example, if a coder subclasses 
SecureRandom and returns a non-random value, the contract is 
violated. 

• Dangerous Function. Functions that cannot be used safely 
should never be used. 

• Directory Restriction. Improper use of the chroot() 
system call may allow attackers to escape a chroot jail. 

• Heap Inspection. Do not use realloc() to resize 
buffers that store sensitive information. 

• J2EE Bad Practices: getConnection(). The J2EE 
standard forbids the direct management of connections. 

• J2EE Bad Practices: Sockets. Socket-based 
communication in web applications is prone to error.  

• Often Misused: Authentication. Do not rely on the name 
the getlogin() family of functions returns because it is 
easy to spoof. 

• Often Misused: Exception Handling. A dangerous 
function can throw an exception, potentially causing the 
program to crash. 

• Often Misused: File System. Passing an inadequately-
sized output buffer to a path manipulation function can 
result in a buffer overflow. 

• Often Misused: Privilege Management. Failure to adhere 
to the principle of least privilege amplifies the risk posed by 
other vulnerabilities. 

• Often Misused: Strings. Functions that manipulate strings 
encourage buffer overflows. 

• Unchecked Return Value. Ignoring a method’s return 
value can cause the program to overlook unexpected states 
and conditions. 

3. Security Features 
Software security is not security software.  Here we're concerned 
with topics like authentication, access control, confidentiality, 
cryptography, and privilege management. 

• Insecure Randomness. Standard pseudo-random number 
generators cannot withstand cryptographic attacks. 

• Least Privilege Violation. The elevated privilege level 
required to perform operations such as chroot() should 
be dropped immediately after the operation is performed. 

• Missing Access Control. The program does not perform 
access control checks in a consistent manner across all 
potential execution paths. 

• Password Management. Storing a password in plaintext 
may result in a system compromise. 

• Password Management: Empty Password in Config 
File. Using an empty string as a password is insecure. 

• Password Management: Hard-Coded Password. Hard 
coded passwords may compromise system security in a way 
that cannot be easily remedied. 

• Password Management: Password in Config File. 
Storing a password in a configuration file may result in 
system compromise. 

• Password Management: Weak Cryptography. Obscuring 
a password with a trivial encoding does not protect the 
password. 

• Privacy Violation. Mishandling private information, such 
as customer passwords or social security numbers, can 
compromise user privacy and is often illegal. 

4. Time and State 
Distributed computation is about time and state. That is, in order 
for more than one component to communicate, state must be 
shared, and all that takes time.   
 
Most programmers anthropomorphize their work. They think 
about one thread of control carrying out the entire program in the 
same way they would if they had to do the job themselves.  
Modern computers, however, switch between tasks very quickly, 
and in multi-core, multi-CPU, or distributed systems, two events 
may take place at exactly the same time. Defects rush to fill the 
gap between the programmer's model of how a program executes 
and what happens in reality. These defects are related to 
unexpected interactions between threads, processes, time, and 
information. These interactions happen through shared state: 
semaphores, variables, the file system, and, basically, anything 
that can store information. 

• Deadlock. Inconsistent locking discipline can lead to 
deadlock.  

• Failure to Begin a New Session upon Authentication. 
Using the same session identifier across an authentication 
boundary allows an attacker to hijack authenticated 
sessions. 

• File Access Race Condition: TOCTOU. The window of 
time between when a file property is checked and when the 
file is used can be exploited to launch a privilege escalation 
attack.  

• Insecure Temporary File. Creating and using 
insecure temporary files can leave application and system 
data vulnerable to attack.  

• J2EE Bad Practices: System.exit(). A Web 
application should not attempt to shut down its container. 

• J2EE Bad Practices: Threads. Thread management in a 
Web application is forbidden in some circumstances and is 
always highly error prone. 

• Signal Handling Race Conditions. Signal handlers may 
change shared state relied upon by other signal handlers or 
application code causing unexpected behavior.  



5. Errors 
Errors and error handling represent a class of API.  Errors related 
to error handling are so common that they deserve a special 
kingdom of their own.  As with “API Abuse,” there are two ways 
to introduce an error-related security vulnerability: the most 
common one is handling errors poorly (or not at all). The second 
is producing errors that either give out too much information (to 
possible attackers) or are difficult to handle. 

• Catch NullPointerException. Catching 
NullPointerException should not be used as an 
alternative to programmatic checks to prevent dereferencing 
a null pointer.   

• Empty Catch Block. Ignoring exceptions and other error 
conditions may allow an attacker to induce unexpected 
behavior unnoticed.   

• Overly-Broad Catch Block. Catching overly broad 
exceptions promotes complex error handling code that is 
more likely to contain security vulnerabilities.  

• Overly-Broad Throws Declaration. Throwing overly 
broad exceptions promotes complex error handling code 
that is more likely to contain security vulnerabilities.  

6. Code Quality 
Poor code quality leads to unpredictable behavior. From a user's 
perspective that often manifests itself as poor usability. For an 
attacker it provides an opportunity to stress the system in 
unexpected ways.  

• Double Free. Calling free() twice on the same memory 
address can lead to a buffer overflow. 

• Inconsistent Implementations. Functions with 
inconsistent implementations across operating systems and 
operating system versions cause portability problems. 

• Memory Leak. Memory is allocated but never freed 
leading to resource exhaustion. 

• Null Dereference. The program can potentially dereference 
a null pointer, thereby raising a 
NullPointerException. 

• Obsolete. The use of deprecated or obsolete functions may 
indicate neglected code.  

• Undefined Behavior. The behavior of this function is 
undefined unless its control parameter is set to a specific 
value. 

• Uninitialized Variable. The program can potentially use a 
variable before it has been initialized. 

• Unreleased Resource. The program can potentially fail to 
release a system resource. 

• Use After Free. Referencing memory after it has been 
freed can cause a program to crash. 

7. Encapsulation 
Encapsulation is about drawing strong boundaries. In a web 
browser that might mean ensuring that your mobile code cannot 
be abused by other mobile code. On the server it might mean 
differentiation between validated data and unvalidated data, 
between one user's data and another's, or between data users are 
allowed to see and data that they are not. 

• Comparing Classes by Name. Comparing classes by name 
can lead a program to treat two classes as the same when 
they actually differ.  

• Data Leaking Between Users. Data can "bleed" from one 
session to another through member variables of singleton 
objects, such as Servlets, and objects from a shared pool. 

• Leftover Debug Code. Debug code can create unintended 
entry points in an application. 

• Mobile Code: Object Hijack. Attackers can use 
Cloneable objects to create new instances of an object 
without calling its constructor.  

• Mobile Code: Use of Inner Class. Inner classes are 
translated into classes that are accessible at package scope 
and may expose code that the programmer intended to keep 
private to attackers.  

• Mobile Code: Non-Final Public Field. Non-final public 
variables can be manipulated by an attacker to inject 
malicious values.  

• Private Array-Typed Field Returned From a Public 
Method. The contents of a private array may be altered 
unexpectedly through a reference returned from a public 
method.  

• Public Data Assigned to Private Array-Typed Field. 
Assigning public data to a private array is equivalent giving 
public access to the array.  

• System Information Leak. Revealing system data or 
debugging information helps an adversary learn about the 
system and form an attack plan. 

• Trust Boundary Violation. Commingling trusted and 
untrusted data in the same data structure encourages 
programmers to mistakenly trust unvalidated data. 

*.     Environment 
This section includes everything that is outside of the source code 
but is still critical to the security of the product that is being 
created. Because the issues covered by this kingdom are not 
directly related to source code, we separated it from the rest of the 
kingdoms. 

• ASP .NET Misconfiguration: Creating Debug Binary. 
Debugging messages help attackers learn about the system 
and plan a form of attack. 

• ASP .NET Misconfiguration: Missing Custom Error 
Handling. An ASP .NET application must enable custom 
error pages in order to prevent attackers from mining 
information from the framework’s built-in responses. 

• ASP .NET Misconfiguration: Password in 
Configuration File. Do not hardwire passwords into your 
software. 

• Insecure Compiler Optimization. Improperly scrubbing 
sensitive data from memory can compromise security.  

• J2EE Misconfiguration: Insecure Transport. The 
application configuration should ensure that SSL is used for 
all access-controlled pages. 

• J2EE Misconfiguration: Insufficient Session-ID Length. 
Session identifiers should be at least 128 bits long to 
prevent brute-force session guessing. 

• J2EE Misconfiguration: Missing Error Handling. A 
Web application must define a default error page for 404 
errors, 500 errors and to catch java.lang.Throwable 
exceptions to prevent attackers from mining information 
from the application container’s built-in error response. 

• J2EE Misconfiguration: Unsafe Bean Declaration. 
Entity beans should not be declared remote. 



• J2EE Misconfiguration: Weak Access Permissions. 
Permission to invoke EJB methods should not be granted to 
the ANYONE role. 

5. SEVEN PLUS OR MINUS TWO 
There are several other software security problem lists that have 
been recently developed and made available. The first at one 
month old, is called the “19 Deadly Sins of Software Security” 
[11]. The second is the “OWASP Top Ten Most Critical Web 
Application Security Vulnerabilities” available on the web [16]. 
Both share one unfortunate property—an overabundance of 
complexity. People are good at keeping track of seven things 
(plus or minus two) [15]. We used this as a hard constraint and 
attempted to keep the number of kingdoms in our taxonomy down 
to seven (plus one).   
 
By discussing these lists with respect to the scheme we propose, 
we illustrate and emphasize the superiority of our taxonomy. The 
main limitation of both lists is that they mix specific types of 
errors and vulnerability classes, and talk about them at the same 
level of abstraction. The nineteen deadly sins include the “Buffer 
Overflows” and “Failing to protect network traffic” categories at 
the same level, even though the first is a very specific coding 
error, while the second could be a class comprised of various 
kinds of errors. OWASP’s top ten includes “Cross Site Scripting 
(XSS) Flaws” and “Insecure Configuration Management” at the 
same level as well. 
 
Our classification scheme consists of two hierarchical levels: 
kingdoms and phyla. The kingdoms represent the classes of 
errors, while the phyla that comprise the kingdoms represent 
specific errors. We would like to point out that even though the 
structure of our classification scheme is different from the 
structure of the lists described above, the categories that comprise 
these lists can be easily mapped to our kingdoms. Here is the 
mapping for the nineteen sins: 
 

1. Input Validation and Representation 
Buffer Overflows 
Command Injection 
Cross-Site Scripting 
Format String Problems 
Integer Range Errors 
SQL Injection 

2. API Abuse 
Trusting Network Address Information 

3. Security Features 
Failing to Protect Network Traffic 
Failing to Store and Protect Data 
Failing to Use Cryptographically Strong Random 

Numbers 
Improper File Access 
Improper Use of SSL 
Use of Weak Password-Based Systems 
Unauthenticated Key Exchange 

4. Time and State 
Signal Race Conditions 
Use of “Magic” URLs and Hidden Forms 

5. Errors  
Failure to Handle Errors 

6. Code Quality  

Poor Usability 
7. Encapsulation  

Information Leakage 
*.     Environment 

 
Here is the mapping for the OWASP top ten: 
 

1. Input Validation and Representation 
Buffer Overflows 
Cross-Site Scripting (XSS) Flaws 
Injection Flaws 
Unvalidated Input 

2. API Abuse 
3. Security Features 

Broken Access Control 
Insecure Storage 

4. Time and State 
Broken Authentication and Session Management 

5. Errors  
Improper Error Handling 

6. Code Quality  
Denial of Service 

7. Encapsulation  
*.     Environment 

Insecure Configuration Management 

6. CONCLUSION 
We present a simple, intuitive taxonomy of common coding 
errors that affect security. We discuss the relationship between 
vulnerability phyla we define and corresponding attacks, and 
provide descriptions of each kingdom in the proposed taxonomy. 
 
We point out the important differences between the scheme we 
propose and those discussed in related work. The classification 
scheme we present is designed to organize security rules, and thus 
be of help to software developers who are concerned with writing 
secure code and being able to automate detection of security 
defects. These goals make our scheme simple, intuitive to a 
developer, practical rather than theoretical and comprehensive, 
amenable to automatic identification of errors with static analysis 
tools, as well as adaptable with respect to changes in trends that 
can happen over time. 
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